1) 5коробок 2) 60 м² 3) 20 м
Объяснение:
1) По рисунку видно, что 1 плитка 0,5*0,5 клетки, или с учетом масштаба:
0,5*0,5*2*2=1 м²
По схеме видно, что дорожка занимает 5*2 клеток и еще 0,5*1 клетку. Рассчитаем площадь плитки с учетом масштаба:
5*2*2*2+0,5*1*2*2=42 м² занимает площадь плитки от коровника к курятнику
42:1=42 плитки
42:10=4,2 коробки округляем в большую сторону до целого 5 коробок
2) Размер теплицы в клетках: 3*1
Размер коровника в клетках: 3*4
Площадь коровника и теплицы с учетом масштаба:
3*1*2*2+3*4*2*2=60 м²
3) Расстояние между двумя ближайшими точками - это расстояние от правого верхнего угла коровника до левого нижнего угла коровника.
Это 10 клеток или 10*2=20 м
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²
1) 5коробок 2) 60 м² 3) 20 м
Объяснение:
1) По рисунку видно, что 1 плитка 0,5*0,5 клетки, или с учетом масштаба:
0,5*0,5*2*2=1 м²
По схеме видно, что дорожка занимает 5*2 клеток и еще 0,5*1 клетку. Рассчитаем площадь плитки с учетом масштаба:
5*2*2*2+0,5*1*2*2=42 м² занимает площадь плитки от коровника к курятнику
42:1=42 плитки
42:10=4,2 коробки округляем в большую сторону до целого 5 коробок
2) Размер теплицы в клетках: 3*1
Размер коровника в клетках: 3*4
Площадь коровника и теплицы с учетом масштаба:
3*1*2*2+3*4*2*2=60 м²
3) Расстояние между двумя ближайшими точками - это расстояние от правого верхнего угла коровника до левого нижнего угла коровника.
Это 10 клеток или 10*2=20 м
Объяснение:
1) Kl=12; KM:ML= 3 : 1
KM=3ML
KM+ML=KL
3ML+ML=12
4ML=12
ML=3
KM=3ML=9
2) AB/ED=YX/LK; AB= 2 см, ED= 3 см и LK= 27 см
YX=LK·AB/ED=27·2/3=54/3=18
YX=18 см
3) ΔKBC∼ΔRTG; k= 18; P₁=8; S₁=9; P₂=?, S₂=?
Условие не полное. Не определена зависимость сторон от коэффициента подобия к. То есть какие стороны подобны(это не обязательно), а главное порядок отношения сторон относительно к.
Рассмотрю оба случая:
a) ΔKBC∼ΔRTG⇒P₂/P₁=k; S₂/S₁=k²
P₂=kP₁=8·18=144 см
S₂=k²S₁=8²·9=64·9=576 см²
б) ΔKBC∼ΔRTG⇒P₁/P₂=k; S₁/S₂=k²
P₂=P₁/=18/8=2,25 см
S₂=S₁/k²=9/8²=9/64 см²