На складе стеклотары хранятся банки емкостью 0,5 л, 0,7 л и 1 л. Сейчас на складе 2500 банок общей емкостью 2000 л. Докажите, что на складе есть хотя бы одна 0,5 литровая банка.
Пусть банки по 0.5 л - x; по 0.7 л - y; по 1 л - z. Составим систему уравнений:
Допустим, что банки по 0.5л отсутствуют. Тогда x = 0. Попробуем решить систему:
Умножаем второе уравнение на 0,7:
0.3z=250
z = 250 : 0,3
Целочисленного решения данной системы не существует. Учитывая, что 1 банка = 1 единице утверждение отсутствия банок емкостью 0.5 л ложно! А значит, есть хотя бы одна 0.5 литровая банка.
На складе стеклотары хранятся банки емкостью 0,5 л, 0,7 л и 1 л. Сейчас на складе 2500 банок общей емкостью 2000 л. Докажите, что на складе есть хотя бы одна 0,5 литровая банка.
Пусть банки по 0.5 л - x; по 0.7 л - y; по 1 л - z. Составим систему уравнений:
Допустим, что банки по 0.5л отсутствуют. Тогда x = 0. Попробуем решить систему:
Умножаем второе уравнение на 0,7:
0.3z=250
z = 250 : 0,3
Целочисленного решения данной системы не существует. Учитывая, что 1 банка = 1 единице утверждение отсутствия банок емкостью 0.5 л ложно! А значит, есть хотя бы одна 0.5 литровая банка.
Ч.Т.Д
То 2 фирма производит х+( х*10):100 (это записывается дробью)
А 3 фирма х+( х*10):100-100.
Всего производится 236 компьютеров
решение
х+ х+( х*10):100 + (х+( х*10):100-100 )=236
приводим к общему знаменателю 100 и получается
100х+100х+10х+100х+100х+10х-10000=23600
420х=23600+10000
420х=33600
х=33600:420
х=80 (комп)-производит 1 фирма
80+(80*10):100=88 (комп) производит 2 фирма
( 80+88 )-100=68 (комп)производит 3 фирма
и того проверка :80+88+68=236 (комп)производят три фирмы.
Надеюсь,объяснила доступно