Найдите сумму многочленов -6-в а во 2степени и аво 2степени+13 а во 2 степени-v+c в3 степени и -a во 2 степени+b+c в 3 степени 3x +14 и -x во 2 степени -3x-18
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
y = √x
1) A(63 ; 3√7)
3√7 = √63
3√7 = √(9 * 7)
3√7 = 3√7 - верно
График этой функции проходит через точку A(63 ; 3√7)
2)B(49 ; - 7)
- 7 = √49
- 7 = 7 - неверно
График этой функции не проходит через точку B(49 ; - 7)
3) C(0,09 ; 0,3)
0,3 = √0,09
0,3 = 0,3 - верно
График этой функции проходит через точку C(0,09 ; 0,3)
4) x ∈ [0 , 25]
Если x = 0 , то y = √0 = 0
Если x = 25 , то y = √25 = 5
ответ : если x ∈ [0 ; 25] , то y ∈ [0 ; 5]
5) y ∈ [9 ; 17]
Если y = 9 , то x = 81 , так как 9 = √9² = √81
Если y = 17 , то x = 289 , так как 17 = √17² = √289
ответ : если y ∈ [9 ; 17 ] , то x ∈ [81 ; 289]
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.