Расстояние от центра башни до путника (36+49)=85 (м).
Форма башни - окружность с радиусом 36 м.
Из точки, где находится путник проведём касательную к окружности башни. Точку касания окружности соединяем с центром: получаем прямоугольный треугольник, где расстояние от центра башни до путника - гипотенуза, расстояние от центра башни до точки касания (нахождения арбалетчика=радиус башни) - катет, расстояние от арбалетчика до путника - катет. ⇒
Путник находится от арбалетчика на расстоянии:
√(85²-36²)=√(7225-1296)=√5929=77 (м).
ответ: путник находится от арбалетчика на расстоянии 77 метров.
Пусть скорость фуры х км/ч, у км - длина моста, s км - расстояние от фуры до начала моста, тогда по условию
{2у/5 : 22 = s/x,
{3у/5 : 22 = (у+s)/x;
{у/55 = s/x,
{3у/110 = (у+s)/x;
{ух = 55s,
{3yx = 110y + 110s;
{ух = 55s,
{3•55s = 110y + 110s;
{ух = 55s,
{165s - 110s = 110y;
{ух = 55s,
{55s = 110y;
{ух = 55s,
{s = 2y;
{ух = 55•2y,
{s = 2y;
{х = 110,
{s = 2y;
Скорость приближающейся фуры - 110 км/ч, она от начала моста на расстоянии, вдвое большем, чем длина самого моста.
Проверим полученный результат:
Длина моста (например) - 1 км
Фура на расстоянии - 2 км от моста
0,4/22 = 2/110 - верно.
0,6/22 = 3/110 - верно.
Второй решения задачи:
Будем для определённости считать, что Тимофей бежит от начала моста А в конец моста В.
Чтобы фуре доехать до точки В, ей потребуется то же время, что и Тимофею для того, чтобы пробежать 5/5 - 3/5 = 3)5 длины моста.
Представим себе, что, развернувшись, Тимофей бежит к началу А. Пока фура доедет до начала моста в точке В, Тимофею останется пробежать до А 3/5 - 2/5 = 1/5 длины моста.
Получается, что всю длину моста фура преодолеет за то, же время, что и Тимофей пробежит 1/5 часть этого же моста.
Это произойдёт лишь в том случае, когда скорость фуры окажется в 5 раз больше, чем скорость Тимофея.
Объяснение:
360 дм=36 м 0,049 км=49 м.
Расстояние от центра башни до путника (36+49)=85 (м).
Форма башни - окружность с радиусом 36 м.
Из точки, где находится путник проведём касательную к окружности башни. Точку касания окружности соединяем с центром: получаем прямоугольный треугольник, где расстояние от центра башни до путника - гипотенуза, расстояние от центра башни до точки касания (нахождения арбалетчика=радиус башни) - катет, расстояние от арбалетчика до путника - катет. ⇒
Путник находится от арбалетчика на расстоянии:
√(85²-36²)=√(7225-1296)=√5929=77 (м).
ответ: путник находится от арбалетчика на расстоянии 77 метров.
110 км/ч.
Объяснение:
Пусть скорость фуры х км/ч, у км - длина моста, s км - расстояние от фуры до начала моста, тогда по условию
{2у/5 : 22 = s/x,
{3у/5 : 22 = (у+s)/x;
{у/55 = s/x,
{3у/110 = (у+s)/x;
{ух = 55s,
{3yx = 110y + 110s;
{ух = 55s,
{3•55s = 110y + 110s;
{ух = 55s,
{165s - 110s = 110y;
{ух = 55s,
{55s = 110y;
{ух = 55s,
{s = 2y;
{ух = 55•2y,
{s = 2y;
{х = 110,
{s = 2y;
Скорость приближающейся фуры - 110 км/ч, она от начала моста на расстоянии, вдвое большем, чем длина самого моста.
Проверим полученный результат:
Длина моста (например) - 1 км
Фура на расстоянии - 2 км от моста
0,4/22 = 2/110 - верно.
0,6/22 = 3/110 - верно.
Второй решения задачи:
Будем для определённости считать, что Тимофей бежит от начала моста А в конец моста В.
Чтобы фуре доехать до точки В, ей потребуется то же время, что и Тимофею для того, чтобы пробежать 5/5 - 3/5 = 3)5 длины моста.
Представим себе, что, развернувшись, Тимофей бежит к началу А. Пока фура доедет до начала моста в точке В, Тимофею останется пробежать до А 3/5 - 2/5 = 1/5 длины моста.
Получается, что всю длину моста фура преодолеет за то, же время, что и Тимофей пробежит 1/5 часть этого же моста.
Это произойдёт лишь в том случае, когда скорость фуры окажется в 5 раз больше, чем скорость Тимофея.
22•5 = 110 (км/ч)- скорость фуры.