Для вычисления промежутков знакопостоянства сперва приравняем нашу функцию к нолю и решим полученное квадратное уравнение, то есть
Теперь необходимо нарисовать ось абсцисс (0х) и на ней отобразить полученные точки, то есть мы получим 3 интервала, такие как 1. (- беск; -3) 2. [-3;4] 3.(4; беск) Определим знак функции на каждом интервале 1. (- беск; -3): у(-5)=-(-5)^2+(-5)+12=-25-5+12=-30+12=-18 <0 2. [-3;4] y(0)=0^2+0+12=0+0+12=12 >0 3.(4; беск) y(5)=-(5)^2+5+12=-25+17=-8 <0 И так мы видим что на интервале (- беск; -3)и(4; беск) функцию имеет отрицательный знак,а на интервале [-3; 4] соответственно положительный. ответ: х Є (- беск; -3) и(4; беск) отрицательные значения, х Є [-3; 4] положительные значения
В решении.
Объяснение:
Преобразуйте выражение в многочлен стандартного вида.
Привести многочлен к стандартному виду, значит, привести подобные члены и расположить одночлены в порядке убывания степеней, от большей к меньшей.
а) 3х² - (2 + 3х — 5х²) =
= 3х² - 2 - 3х + 5х² =
= 8х² - 3х - 2.
б) 4 + (-х + 5х²) + 2х =
= 4 - х + 5х² + 2х =
= 5х² + х + 4.
в) х -(4 +3х — х²) + (2 — х²) =
= х - 4 - 3х + х² + 2 - х² =
= -2х - 2.
г) 5 + (2х² - х) — (4х² + 5 ) + х =
= 5 + 2х² - х - 4х² - 5 + х =
= -2х². Многочлен преобразуется в одночлен.
Теперь необходимо нарисовать ось абсцисс (0х) и на ней отобразить полученные точки, то есть мы получим 3 интервала, такие как
1. (- беск; -3)
2. [-3;4]
3.(4; беск)
Определим знак функции на каждом интервале
1. (- беск; -3): у(-5)=-(-5)^2+(-5)+12=-25-5+12=-30+12=-18 <0
2. [-3;4] y(0)=0^2+0+12=0+0+12=12 >0
3.(4; беск) y(5)=-(5)^2+5+12=-25+17=-8 <0
И так мы видим что на интервале (- беск; -3)и(4; беск) функцию имеет отрицательный знак,а на интервале [-3; 4] соответственно положительный.
ответ: х Є (- беск; -3) и(4; беск) отрицательные значения,
х Є [-3; 4] положительные значения