Скорость первого рабочего v₁ деталей в минуту Скорость второго рабочего v₂ деталей в минуту Пусть в партии S деталей. Тогда (S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии. S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию. Если х - искомое количество деталей, то (S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии. Отсюда x=S(1-v₂/(2v₁)). Из 1-го и 2-го уравнений получим v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е. S^2=2(S-8)(S-15). Решаем это квадратное уравнение, получаем корни 6 и 40. 6 не подходит, т.к. количество деталей больше 6. Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24. ответ: 24 детали.
Объем работы (заказ) = 1 (целая) 1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа 1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе 2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет I рабочий самостоятельно 3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно 4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
Скорость второго рабочего v₂ деталей в минуту
Пусть в партии S деталей.
Тогда
(S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии.
S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию.
Если х - искомое количество деталей, то
(S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии.
Отсюда x=S(1-v₂/(2v₁)).
Из 1-го и 2-го уравнений получим
v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е.
S^2=2(S-8)(S-15).
Решаем это квадратное уравнение, получаем корни 6 и 40.
6 не подходит, т.к. количество деталей больше 6.
Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24.
ответ: 24 детали.
1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа
1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе
2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет
I рабочий самостоятельно
3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно
4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.