Объяснение:
Пусть они выехали в x час.
Значит, они ехали (16 -x) час. со скоростью v км/час, проехав расстояние
s = v*(16-x) км.
Если бы скорость была на 25% больше, т.е. 1,25v, то они ехали бы (14,5-x) час., проехав то же расстояние s = 1,25v*(14,5-x).
Приравняем правые части в выражениях для s.
v*(16-x) = 1,25v*(14,5-x)
Решим относительно x, предварительно сократив v.
16-x = 1,25*(14,5-x)
16-x = 18,125 - 1,25x
1,25x -x=18,125-16
0,25x = 2,125
x= 2,125/0,25
x =8,5
ответ: выехали из дома в 8 ч. 30 мин.
Объяснение:
Пусть они выехали в x час.
Значит, они ехали (16 -x) час. со скоростью v км/час, проехав расстояние
s = v*(16-x) км.
Если бы скорость была на 25% больше, т.е. 1,25v, то они ехали бы (14,5-x) час., проехав то же расстояние s = 1,25v*(14,5-x).
Приравняем правые части в выражениях для s.
v*(16-x) = 1,25v*(14,5-x)
Решим относительно x, предварительно сократив v.
16-x = 1,25*(14,5-x)
16-x = 18,125 - 1,25x
1,25x -x=18,125-16
0,25x = 2,125
x= 2,125/0,25
x =8,5
ответ: выехали из дома в 8 ч. 30 мин.
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума