В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
narutoudzumaki228
narutoudzumaki228
12.02.2020 11:23 •  Алгебра

Найдите общее решение дифференциального уравнения
y"+10y'-11y=0

Показать ответ
Ответ:
Nikalusha
Nikalusha
10.10.2020 10:37

ответ: y=C1*e^(-11*x)+C2*e^(x).

Объяснение:

Составляем характеристическое уравнение (ХУ): k²+10*k-11=(k+11)*(k-1)=0. Оно имеет корни k1=-11, k2=1. Если корни ХУ k1 и k2 - действительные и различные, то общее решение данного ДУ имеет вид  y=C1*e^(k1*x)+C2*e^(k2*x). В нашем случае y=C1*e^(-11*x)+C2*e^(x).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота