1.Пусть х (м/ч)-скорость улитки при подъеме, тогда х+2 (м/ч)-скорость улитки при спуске. 2. (Вспоминаем физику время движения равно пройденное расстояние делить на время), тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска. Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение: 6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю) 6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2)) (6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим) 3.Уравнение 6х+12 +5х-14х²-28х=0 -14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент) 14х² +17х-12=0, а =14, b=17, c=-12 Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5 x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7 Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной) Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске, тогда 6/0,5=12 часов - время подъема 5/2,5=2 часа - время спуска
Для того, чтобы билет был интересным, нужно, чтобы в его номере присутствовали числа 05, 16, 27, 38, 49, 50, 61, 72, 83, 94 Всего 10 пар. Пусть ab - одно из этих чисел. Тогда номер интересного билета может выглядеть так: ab** *ab* **ab где вместо звёздочек стоят цифры от 0 до 9. То есть для каждой пары чисел есть 3 возможных варианта расположения в номере билета, причём при каждом варианте расположения будет 100 различных номеров билетов. Таким образом, всего интересных билетов будет 10*3*100 = 3000 штук. Тогда вероятность вытянуть такой билет составит
2. (Вспоминаем физику время движения равно пройденное расстояние делить на время),
тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска.
Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение:
6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю)
6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2))
(6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим)
3.Уравнение 6х+12 +5х-14х²-28х=0
-14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент)
14х² +17х-12=0,
а =14, b=17, c=-12
Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5
x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7
Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной)
Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске,
тогда 6/0,5=12 часов - время подъема
5/2,5=2 часа - время спуска
05, 16, 27, 38, 49, 50, 61, 72, 83, 94
Всего 10 пар.
Пусть ab - одно из этих чисел. Тогда номер интересного билета может выглядеть так:
ab**
*ab*
**ab
где вместо звёздочек стоят цифры от 0 до 9. То есть для каждой пары чисел есть 3 возможных варианта расположения в номере билета, причём при каждом варианте расположения будет 100 различных номеров билетов.
Таким образом, всего интересных билетов будет 10*3*100 = 3000 штук.
Тогда вероятность вытянуть такой билет составит