Возможные исходы, бросая два кубика, можно оформить в таблице. Первая цифра в таблице указывает, сколько пунктов выпало на первом кубике, вторая — сколько пунктов на втором кубике. Всего 36 результатов. (см. на фото)
P(события) = все исходы;
P(сумма пунктов равна 4) = 3/36 (благоприятные исходы: 3/1 и 1/3; 2/2 - вместе 3 исходов);
P(сумма пунктов равна 2) =1/36 (1/1 — только 1 благоприятный исход);
P(сумма пунктов больше 9) = 6/36 (исход благоприятный, если выпадет 10, 11 или 12 пунктов, значит, вместе 3 + 2 + 1 = 6 исходов).
бласть значений функции - это множество всех действительных значений y, которые принимает функция.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодическость функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
А - сумма выпавших пунктов равна 6.
Объяснение:
Возможные исходы, бросая два кубика, можно оформить в таблице. Первая цифра в таблице указывает, сколько пунктов выпало на первом кубике, вторая — сколько пунктов на втором кубике. Всего 36 результатов. (см. на фото)
P(события) = все исходы;
P(сумма пунктов равна 4) = 3/36 (благоприятные исходы: 3/1 и 1/3; 2/2 - вместе 3 исходов);
P(сумма пунктов равна 2) =1/36 (1/1 — только 1 благоприятный исход);
P(сумма пунктов больше 9) = 6/36 (исход благоприятный, если выпадет 10, 11 или 12 пунктов, значит, вместе 3 + 2 + 1 = 6 исходов).
бласть значений функции - это множество всех действительных значений y, которые принимает функция.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодическость функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
Выбирай из того, что .