(1м+3п)-умножим на 3 и получим (3м+9п) По условию (3м+4п) делится на 5, найдем разность: (3м+9п)-(3м+4п)=5п, сколько бы не стоили пирожные при умнжении на пять мы получим цену, за которую можно расплатиться пятирублевками. Отсюда следует, что (3м+9п) делится на 5, (1м+3п) в три раза меньше чем(3м+9п), значит цена Катиной покупки будет делиться на 5 если(3м+9п)будет делится еще и на 3, а оно будет делится тк каждое слагаемое этой суммы делится на 3. Значит Катя сможет расплатиться пятирублевыми монетами. ответ: да, сможет
1. Вероятность того, что на монете выпала решка равна 1/2, а вероятность того, что на игральной кости выпало нечетное число очков равно 3/6=1/2. Поскольку событий независимы, то вероятность того, что выпали на монете решка, а на кости нечетное число очков равна 1/2 * 1/2 = 1/4.
2. Найдем вероятность того, что карта король черной масти: Всего все возможных событий: . Всего благоприятных событий: Тогда вероятность
Тогда вероятность того, что карта не король черной масти:
3. Всего все возможных событий: 36 сумма выпавших число очков не больше 3: {1;2}, {2;1}, {1;1}- всего 3 (благоприятных событий) Вероятность того, что сумма выпавших число очков не больше 3 равна
Тогда вероятность того, что сумма выпавших число очков не меньше 3 равна
4. Всего все возможных событий: . Взять 2 красных шаров можно
По условию (3м+4п) делится на 5, найдем разность: (3м+9п)-(3м+4п)=5п, сколько бы не стоили пирожные при умнжении на пять мы получим цену, за которую можно расплатиться пятирублевками. Отсюда следует, что (3м+9п) делится на 5,
(1м+3п) в три раза меньше чем(3м+9п), значит цена Катиной покупки будет делиться на 5 если(3м+9п)будет делится еще и на 3, а оно будет делится тк каждое слагаемое этой суммы делится на 3. Значит Катя сможет расплатиться пятирублевыми монетами.
ответ: да, сможет
2. Найдем вероятность того, что карта король черной масти:
Всего все возможных событий: . Всего благоприятных событий:
Тогда вероятность
Тогда вероятность того, что карта не король черной масти:
3. Всего все возможных событий: 36
сумма выпавших число очков не больше 3: {1;2}, {2;1}, {1;1}- всего 3 (благоприятных событий)
Вероятность того, что сумма выпавших число очков не больше 3 равна
Тогда вероятность того, что сумма выпавших число очков не меньше 3 равна
4. Всего все возможных событий: . Взять 2 красных шаров можно
Искомая вероятность: