Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
По теореме Пифагора x^2=y^2+z^2, т.е. квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, а у нас получается 2 равных прямоугольных треугольника.
Тогда выражаем
x^2=(x-6)^2+(x-3)^2
По формуле сокращённого умножения получаем
x^2= x^2-12x+36 + x^2-6x+9
Переносим x^2 в правую сторону уравнения и сокращаем остальное
0=x^2-18x+45
Решаем как простое квадратное уравнение
D+18^2-4*45=144=12^2
x1=(18+12):2=15
x2=(18-12):2=3
Значит гипотенуза равна 15 либо 3. Предположим, что она равна 3, тогда вторая сторона равно 0, т.к. по условию она на 3 меньше гипотенузы, а она не может быть равна 0, значит гипотенуза равна 15. Из неё вычисляем обе стороны:
Объяснение:
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
5; 5q; 5q² геометрическая прогрессия
5-20; 5q; 5q² арифметическая прогрессия
по характеристическому свойству
арифметической прогрессии
2 · 5q = -15 + 5q² |:5
q² - 2q - 3 = 0
D=b² - 4ac
D=4 + 12 = 16
q₁ = (2 + 4)/2 =3
тогда арифметическая прогрессия: -15; 15; 45
q₂ = (2 - 4)/2 = -1
тогда арифметическая прогрессия: -15; -5; 5
О т в е т: -15; 15; 45 или -15; -5; 5
ответ: 42см
Объяснение:
Диагональ будет x
По теореме Пифагора x^2=y^2+z^2, т.е. квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, а у нас получается 2 равных прямоугольных треугольника.
Тогда выражаем
x^2=(x-6)^2+(x-3)^2
По формуле сокращённого умножения получаем
x^2= x^2-12x+36 + x^2-6x+9
Переносим x^2 в правую сторону уравнения и сокращаем остальное
0=x^2-18x+45
Решаем как простое квадратное уравнение
D+18^2-4*45=144=12^2
x1=(18+12):2=15
x2=(18-12):2=3
Значит гипотенуза равна 15 либо 3. Предположим, что она равна 3, тогда вторая сторона равно 0, т.к. по условию она на 3 меньше гипотенузы, а она не может быть равна 0, значит гипотенуза равна 15. Из неё вычисляем обе стороны:
15-6=9 15-3=12
И по формуле вычисляем периметр:
2*9+2*12=18+24=42