пусть v автобуса=х, тогда v автомобиля=х+20. 10минут=⅙ часа, а 5 минут=1/12часа, и если автомобиль потратил меньше времени на ⅙ и 1/12, то автобус потратил больше, именно на это время. Автобус потратил на поездку 30/х, а
автомобиль: 30/(х+20). Зная разницу во времени составим уравнение:
30/х-30/(х+20)=⅙+1/12 здесь найдём общий знаменатель в обеих частях уравнения и получим:
(30х+600-30х)/(х(х+20))=(2+1)/12
600/(х²+20х)=3/12
600/(х²+20х)=1/4
х²+20х=600×4
х²+20х=2400
х²+20х-2400=0
D=400-4×(-2400)=400+9600=10000
x1= (-20-100)/2= -120/2= -60
x2=( -20+100)/2=80/2=40
Итак: х1 нам не подходит поскольку скорость не может быть отрицательной поэтому мы используем х2=40. Итак: v автобуса, =40км/ч, тогда v автомобиля=40+20=60км/ч
Графиком линейной функции является прямая.
х - независимая переменная, то есть может принимать любые значения.
у - зависимая переменная, то есть её значение зависит от значения х.
Чтобы построить график, возьмём две точки.
Если х = 0, у = 2
Если х = 1, у = 3
У нас есть координаты двух точек А (0;2), В (1;3). Теперь, построим график:
Задание#2А) Если х = 3 то у = 3 + 2 = 5
ответ: у = 5
Б) Если у = 0, то х:
0 = х + 2
-х = 2
х = -2
ответ: х = -2
Если нужен график точек А (3;5) и В (-2;0), то он тоже прикреплен 2 картинкой.
v автомобиля=60км/ч
Объяснение:
пусть v автобуса=х, тогда v автомобиля=х+20. 10минут=⅙ часа, а 5 минут=1/12часа, и если автомобиль потратил меньше времени на ⅙ и 1/12, то автобус потратил больше, именно на это время. Автобус потратил на поездку 30/х, а
автомобиль: 30/(х+20). Зная разницу во времени составим уравнение:
30/х-30/(х+20)=⅙+1/12 здесь найдём общий знаменатель в обеих частях уравнения и получим:
(30х+600-30х)/(х(х+20))=(2+1)/12
600/(х²+20х)=3/12
600/(х²+20х)=1/4
х²+20х=600×4
х²+20х=2400
х²+20х-2400=0
D=400-4×(-2400)=400+9600=10000
x1= (-20-100)/2= -120/2= -60
x2=( -20+100)/2=80/2=40
Итак: х1 нам не подходит поскольку скорость не может быть отрицательной поэтому мы используем х2=40. Итак: v автобуса, =40км/ч, тогда v автомобиля=40+20=60км/ч