В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Milkiskiss
Milkiskiss
15.01.2020 09:55 •  Алгебра

Найдите наименьшее значение выражения и значения x и y при которых достигается |6x+5y+7|+|2x+3y+1|

Показать ответ
Ответ:
Лилька120
Лилька120
25.05.2020 21:21
По основному свойству модуля |a|≥0. Отсюда следует, что наименьшее значение, которое может принимать модуль - это 0. Также и сумма модулей может принимать наименьшее значение, равное 0. Для этого необходимо, чтобы каждое слагаемое было равно 0. В данном случае |6x+5y+7|+|2x+3y+1|=0 ⇒ |6x+5y+7|=0 и |2x+3y+1|=0 ⇒ 6x+5y+7=0 и 2x+3y+1=0. То есть, получили систему линейных уравнений:
 \left \{ {{6x+5y+7=0} \atop {2x+3y+1=0}} \right.
Решением данной системы уравнений является пара (-2;1).
ответ: наименьшее значение выражения равно 0 при x=-2, y=1.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота