В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
lolipop123332
lolipop123332
05.02.2021 09:51 •  Алгебра

Найдите наименьшее натуральное число являющиеся решением неравенства b) - 43x + 2 \leqslant 45


a)10 + 7x 24

Показать ответ
Ответ:
10MisisVika10
10MisisVika10
13.12.2021 11:02
а)sin 2x=√3 cos x
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
0,0(0 оценок)
Ответ:
ololoololoev1
ololoololoev1
07.05.2022 16:41

Высоты треугольника пересекаются в одной точке.

Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.

Уравнение прямой АВ найдем по формуле:

(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или

(X+4)/2=(Y-0)/-2 - каноническое уравнение =>

y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.

Условие перпендикулярности прямых: k1=-1/k => k1=1.

Тогда уравнение перпендикуляра к стороне АВ из вершины С

найдем по формуле:

Y-Yс=k1(X-Xс) или Y-2=X-2 =>

y=х (1) - это уравнение перпендикуляра СС1.

Уравнение прямой АС:

(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или

(X+4)/6=(Y-0)/2 - каноническое уравнение =>

y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.

Условие перпендикулярности прямых: k1=-1/k => k1 = -3.

Тогда уравнение перпендикуляра к стороне АС из вершины В

найдем по формуле:

Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>

y=-3х-8 (2)- это уравнение перпендикуляра BB1.

Точка пересечения перпендикуляров имеет координаты:

х=-3х - 8 (подставили (1) в (2)) => х = -2.

Тогда y = -2.

ответ: точка пересечения высот совпадает с вершиной В(-2;-2)

треугольника, то есть треугольник прямоугольный с <B=90°.

Для проверки найдем длины сторон треугольника:

АВ=√(((-2-(-4))²+(-2)²) = 2√2.

ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.

АС=√(((2-(-4))²+2²) = 2√10.

АВ²+ВС² = 40; АС² = 40.

По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота