В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
KoNetik2020
KoNetik2020
08.03.2022 02:17 •  Алгебра

Найдите наибольшее значение выражения: a)(4x+1)^2+6; b)4x^4+4x+4; c)5x^2-x

Показать ответ
Ответ:
SvetlanaSagina
SvetlanaSagina
28.05.2023 22:31
Как вы сказали вам нужно любое решение этой задачи пока не придумал более школьного! 
Решение: Достаточно найти вообще наибольшее значение которое может принимать это выражение затем просто отсеить целое!  
x^2+3y^2+z^2=2\\
z=\sqrt{2-x^2-3y^2}\\


Теперь рассмотрим выражение f(x;y;z)=2x+y-z как функцию! 
подставим в наше и получим уже функцию с двумя переменным 
f(x;y)=2x+y-\sqrt{2-x^2-3y^2}\\


Такую задачу решим как нахождение экстремума нескольких функций! 
Найдем частные производные 
\frac{dz}{dx}=\frac{x}{\sqrt{-x^2-3y^2+2}}+2\\
\frac{dz}{dy}=\frac{3y}{\sqrt{-x^2-3y^2+2}}+1\\


Теперь  решим систему и найдем  точки 
\left \{ {{\frac{x}{\sqrt{-x^2-3y^2+2}}+2=0\\
} \atop \frac{3y}{\sqrt{-x^2-3y^2+2}}+1=0\\}} \right. \\
\\
zamena\\
\sqrt{-x^2-3y^2+2}=t\\
\\
\frac{x}{t}=-2\\
\frac{3y}{t}=-1\\
\\
\frac{x}{2}=3y\\
x=6y\\
\\


потом подставим найдем х , и в итоге будет 6 точек ! 
основные такие две  x=-\sqrt{\frac{3}{2}}\\
y=-\frac{1}{2\sqrt{6}}

Теперь находя производные второго и третьего порядка , я сделал вычисления 
главное найти смешанное  производную 
\frac{d^2z}{dxdy}=\frac{3xy}{(-x^2-3y^2+2)^{\frac{3}{2}}}
Я уже проверил сходимость по формуле 
подставим наши значение и получим \frac{4\sqrt{3}}{6}
0,0(0 оценок)
Ответ:
kopil199420p017kl
kopil199420p017kl
23.06.2022 21:45
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота