В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Kafyadd
Kafyadd
16.07.2020 08:14 •  Алгебра

Найдите наибольшее натуральное решение неравенства (корень из 2, минус 1)x< =1+ корень из двух

Показать ответ
Ответ:
kristimilafffka
kristimilafffka
22.06.2020 09:57
(\sqrt{2} -1)x \leq 1+ \sqrt{2} \\\\x \leq \frac{1+ \sqrt{2} }{ \sqrt{2}-1 } \\\\x \leq \frac{ (\sqrt{2} +1)( \sqrt{2} +1)}{( \sqrt{2} )^2-1^2}\\\\x \leq \frac{( \sqrt{2}+1)^2 }{2-1}\\\\x \leq \frac{2+2 \sqrt{2}+1 }{1} \\\\x \leq 3+2 \sqrt{2}

Натуральными решениями неравенства являются {1;2;3;4;5}
Наибольшее натуральное решение равно 5
0,0(0 оценок)
Ответ:
WDGa5ter
WDGa5ter
22.06.2020 09:57
Переносим в одну часть и получаем, что x \leq \frac{1+ \sqrt{2} }{ \sqrt{2} -1}, домножаем на \sqrt{2} +1 и получаем, что x \leq 3+2 \sqrt{2}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота