(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
В решении.
Объяснение:
2. [6 б] Функция задана уравнением у = х² - 6х + 5
1) определите направление ветвей параболы;
График - парабола со смещённым центром, ветви направлены вверх.
2) вычислите координаты вершины параболы;
х₀ = -b/2а = 6/2 = 3;
х₀ = 3;
у₀ = 3² - 6*3 + 5 = 9 - 18 + 5 = -4.
у₀ = -4;
Координаты вершины параболы (3; -4) ;
3) запишите ось симметрии параболы;
Ось симметрии Х = -b/2а = 6/2 = 3 ;
Х = 3;
4) в каких точках график данной функции пересекает ось Ох;
(нули функции).
Любой график пересекает ось Ох при у равном нулю:
х² - 6х + 5 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 36 - 20 = 16 √D= 4
х₁=(-b-√D)/2a
х₁=(6-4)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(6+4)/2
х₂=10/2
х₂=5.
Координаты нулей функции (1; 0); (5; 0).
5) в каких точках график данной функции пересекает ось Оу?
Любой график пересекает ось Оу при х равном нулю:
у = х² - 6х + 5 ; х = 0;
у = 0 - 0 + 5
у = 5.
Координаты точки пересечения графиком оси Оу (0; 5).
6) найдите дополнительные 2 точки графика;
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -1 0 1 2 3 4 5 6 7
у 12 5 0 -3 -4 -3 0 5 12
7) постройте график функции y = x² - 6x + 5.
Рассмотрим несколько ситуаций:
1)если старший коэффициент при x^2=0 ( при а=-2):
0*x^2+3x-2+5=0
3x+3=0
3x=-3
x=-1
Значит, a=-2 нам подходит
2) если средний коэффициент равен нулю ( при а=1):
3x^2+0*x+1+5=0
3x^2+6=0
3x^2=-6 - решений нет, значит а=1 нам не подходит.
3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля:
D= (1-a)^2-4(2+a)(a+5)>=0
1-2a+a^2-4(2a+10+a^2+5a)>=0
1-2a+a^2-4(a^2+7a+10)>=0
1-2a+a^2-4a^2-28a-40>=0
-3a^2-30a-39>=0
3a^2+30a+39<=0 | :3
a^2+10a+13<=0
a^2+10a+13=0
D=10^2-4*1*13=48
a1=(-10-4V3)/2=-5-2V3
a2=-5+2V3
+[-5-2V3]-[-5+2V3]+
"-2" - входит в этот промежуток
ответ: x e [-5-2V3] U [-5+2V3]