Надо найти сколькими из 4-х человек можно отобрать 2, то есть найти число сочетаний из 4 по 2 - это будет . Решение на картинке.
Если объяснять словами то есть 4 человека 1,2,3,4. В первый отряд мы можем взять (1 и 2), (1 и 3), (1 и 4), (2 и 3), (2 и 4), и (3 и 4) - это и будет .
Теперь найдем сколькими можно сочетать оставшиеся 12 человек по 6, то есть сколькими можно их разделить на 2 равных отряда. Это . Решение на второй картинке.
И, что бы окончательно решить, сколькими можно распределить 12 человек не знающих местность и 4 человек знающих местность нужно перемножить полученные результаты:
6*66 = 396 - это и будет общее количество , которыми можно разделить 16 человек на 2 отряда по 8 человек, что бы в каждом отряде было 2 человека знающих местность и 6 человек не знающих местность.
Далее, исследуем знак производной слева и справа от точек, чтобы понять, где максимум а где минимум: (1) Слева от 0 у нас + , а справа - . Справа от 1 у нас + ответ 1-го уравнения: 0- max ; 1 - min ответ 2-го уравнения : 2 - min
Объяснение:
Надо найти сколькими из 4-х человек можно отобрать 2, то есть найти число сочетаний из 4 по 2 - это будет . Решение на картинке.
Если объяснять словами то есть 4 человека 1,2,3,4. В первый отряд мы можем взять (1 и 2), (1 и 3), (1 и 4), (2 и 3), (2 и 4), и (3 и 4) - это и будет .
Теперь найдем сколькими можно сочетать оставшиеся 12 человек по 6, то есть сколькими можно их разделить на 2 равных отряда. Это . Решение на второй картинке.
И, что бы окончательно решить, сколькими можно распределить 12 человек не знающих местность и 4 человек знающих местность нужно перемножить полученные результаты:
6*66 = 396 - это и будет общее количество , которыми можно разделить 16 человек на 2 отряда по 8 человек, что бы в каждом отряде было 2 человека знающих местность и 6 человек не знающих местность.
(1) у’ = 6х^2 -6х
(2)у’ = 3х^2 -12х + 12
Потом мы эти выражения приравниваем к 0:
(1) х(6х - 6) = 0
х = 0 - критические точки
х = 1 - критические точки
(2) х^2 - 4х + 4 = 0 можем упростить так :
(х - 2) (х - 2)=0
х= 2 - критическая точка
Далее, исследуем знак производной слева и справа от точек, чтобы понять, где максимум а где минимум:
(1) Слева от 0 у нас + , а справа - . Справа от 1 у нас +
ответ 1-го уравнения: 0- max ; 1 - min
ответ 2-го уравнения : 2 - min