31, 29, 27 a1 = 31 d = a2 - a1 = 29 - 31 = -2 Прогрессия убывающая. Для того чтобы ответить на вопрос задачи (Сколько положительных членов имеет арифметическая прогрессия), найдем первый отрицательный член прогрессии. Его номер обозначим через m аm = a1 + (m - 1)d аm = 31 + (m - 1)*(-2) Т.к. этот член отрицательный, то аm < 0 => 31 + (m - 1)*(-2)< 0 31 - 2m + 2 < 0 - 2m + 33 < 0 - 2m < - 33 | : (-2) m > 16,5 Итак, номер первого отрицательного члена прогрессии > 16,5, т.е. 17. И он равен а17 = a1 + (17 - 1)d = 31 + (17 - 1)*(-2) = 31 - 32 = -1 Значит предыдущие 16 членов положительны или = 0. Причем нулю может быть равен только член с номером 16. Вычислим а16 : а16 = a17 - d = -1 - (-2) = -1 + 2 = 1 > 0
ответ: арифметическая прогрессия имеет 16 положительных членов.
a1 = 31
d = a2 - a1 = 29 - 31 = -2
Прогрессия убывающая.
Для того чтобы ответить на вопрос задачи (Сколько положительных членов имеет арифметическая прогрессия), найдем первый отрицательный член прогрессии.
Его номер обозначим через m
аm = a1 + (m - 1)d
аm = 31 + (m - 1)*(-2)
Т.к. этот член отрицательный, то аm < 0 =>
31 + (m - 1)*(-2)< 0
31 - 2m + 2 < 0
- 2m + 33 < 0
- 2m < - 33 | : (-2)
m > 16,5
Итак, номер первого отрицательного члена прогрессии > 16,5, т.е. 17.
И он равен а17 = a1 + (17 - 1)d = 31 + (17 - 1)*(-2) = 31 - 32 = -1
Значит предыдущие 16 членов положительны или = 0. Причем нулю может быть равен только член с номером 16. Вычислим а16 :
а16 = a17 - d = -1 - (-2) = -1 + 2 = 1 > 0
ответ: арифметическая прогрессия имеет 16 положительных членов.
а) -4х²-6х+6, -4 коэфициент при старшей степени
б) +3 свободный член
2.
а)х²+6х+7=х²+2·х·3+3²-3²+7=х²+6х+9-9+7=(х+3)²-2;
б)х²-6х=х²-2·х·3+3²-3²=(х+3)²-9;
3.
а)х²-6х-16
х²-6х-16=0
D=(-6)²-4·1·(-16)=36+64=100
x1=(6-10)/2=-2
x2=(6+10)/2=8
x²-6x-16=(x+2)(x-8)
б)9х+6х-8
9х+6х-8=0
D=6²-4·9·(-8)=36+288=324=18²
x1=(-6-18)/(2·9)=-24/18=-4/3
x2=(-6+18)/(2·9)=12/18=2/3
4.
х² – х – 6 = 0
x=-2
(-2)²-(-2)-6=4+2-6=6-6=0;
x²+2x-3x-6=0;
x(x+2)-3(x+2)=0;\\
(x+2)(x-3)=0;\\
x=-2; 3
5.a\
a) y²-10y+26>0
y²-10y+26=y²-2·y·5+5²-5²+26=(y-5)²+26-25=(y-5)²+1
(y-5)²≥0
(y-5)²+1≥1>0
(y-5)²+1>0
b)–у² + 4у – 6<0
–у² + 4у – 6=–у² + 2·у·2-2² +2²– 6=-(y²-2·y·2+2²)-6+4=-(y-2)²-2
(y-2)≥0;
-(y-2)²≤0
-(y-2)²-2≤-2<0
-(y-2)²-2<0
6.
a)a²-4a+7=a²-2·a·2+2²-2²+7=(a-2)²+3
min (a-2)²=0
mix a²-4a+7=3
min=3
b)-a²+6a-14=-a²+2·a·3-3²+3²-14=-(a²-2·a·3+3²)+9-14=-(a-3)²-5;\\
min(a-3)²=0;
max -(a-3)²=0;
max-(a-3)²-5=-5;
max=-5
7.
(a-8)(12-a)=-a²+12a-8a-96=-a²+4a-96=-a²+2·a·2-2^2+4+96=-(a-2)²+100
при а =10 мах