В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Irusik55
Irusik55
20.01.2023 19:12 •  Алгебра

Найдите два числа, сумма которых равна 20, а сумма их квадратов равна 218

Показать ответ
Ответ:
nafani1
nafani1
15.07.2020 01:47
Пусть х-меньшее число тогда у-большее число, то система уравнения 
х+y=20
х^2+y^2=218

x + y = 20, значит x = 20 - y.

x² + y² = 218

(20 - y)² + y² = 218

(20² - 2*20*y + y²) + y² = 218

2y² - 40y + 400 - 218 = 0

y² - 20y + 91 = 0

Решаем квадратное уравнение: D = 20² - 4×91 = 36. sqrt(D) = 6. (sqrt — квадратный корень.)

y = (-b ± sqrt(D)) / 2a = (20 ± 6) / 2 = 10 ± 3.

y1 = 7. x1 = 20 - y1 = 13. (Смотри первую строчку.)

y2 = 13. x2 = 20 - y2 = 7.

ответ: это числа 13 и 7


если решил так то ставь лучший

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота