ЧИСЛО, грамматическая категория, указывающая на количество предметов, обозначаемых данным словом или словом, находящимся с данным в отношениях синтаксического согласования. Число единственное, множественное; в некоторых языках — двойственное, тройственное. Выражается обычно формами словоизменения или словообразования.
ЧИСЛО, система налогообложения в 13-15 веках на подвластных Монгольской державе территориях (Китай, Средняя Азия, Персия, Русь) ; основана на переписи (исчислении, «числе» ) населения. Налоги взимались поголовно, пропорционально имуществу плательщиков. Число было введено при великом хане Менгу (1251-1259) в Китае, Средней Азии, Персии, Армении и сменило откупную систему налогов с завоеванных земель. На Руси число было введено во Владимиро-Суздальской, Муромо-Рязанской, Новгородской землях. Монгольские писцы (численники) провели переписи населения, которое делилось на десятки, сотни, тысячи и «тьмы» (10 тысяч) . Служители церкви из переписи исключались. Численники переписывали население по домам. Злоупотребления при переписи вызывали восстания (например, восстание в Великом Новгороде в 1257). На Руси деление населения по десятичной системе для уплаты налогов или экстраординарных ордынских сборов сохранялось вплоть до 15 века.
ЧИСЛО, одно из основных понятий математики; зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счетом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3, 4Задачи измерения длин, площадей и т. п. , а также выделение долей именованных величин привели к понятию рационального (дробного) числа. Понятие об отрицательных числах возникло у индийцев в 6-11 вв. Потребность в точном выражении отношений величин (напр. , отношение диагонали квадрата к его стороне) привела к введению иррациональных чисел, которые выражаются через рациональные числа лишь приближенно; рациональные и иррациональные числа составляют совокупность действительных чисел. Окончательное развитие теория действительных чисел получила лишь во 2-й пол. 19 в. в связи с потребностями математического анализа. В связи с решением квадратных и кубических уравнений в 16 в. были введены комплексные числа.
ЧИСЛО, система налогообложения в 13-15 веках на подвластных Монгольской державе территориях (Китай, Средняя Азия, Персия, Русь) ; основана на переписи (исчислении, «числе» ) населения. Налоги взимались поголовно, пропорционально имуществу плательщиков. Число было введено при великом хане Менгу (1251-1259) в Китае, Средней Азии, Персии, Армении и сменило откупную систему налогов с завоеванных земель. На Руси число было введено во Владимиро-Суздальской, Муромо-Рязанской, Новгородской землях. Монгольские писцы (численники) провели переписи населения, которое делилось на десятки, сотни, тысячи и «тьмы» (10 тысяч) . Служители церкви из переписи исключались. Численники переписывали население по домам. Злоупотребления при переписи вызывали восстания (например, восстание в Великом Новгороде в 1257). На Руси деление населения по десятичной системе для уплаты налогов или экстраординарных ордынских сборов сохранялось вплоть до 15 века.
ЧИСЛО, одно из основных понятий математики; зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счетом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3, 4Задачи измерения длин, площадей и т. п. , а также выделение долей именованных величин привели к понятию рационального (дробного) числа. Понятие об отрицательных числах возникло у индийцев в 6-11 вв. Потребность в точном выражении отношений величин (напр. , отношение диагонали квадрата к его стороне) привела к введению иррациональных чисел, которые выражаются через рациональные числа лишь приближенно; рациональные и иррациональные числа составляют совокупность действительных чисел. Окончательное развитие теория действительных чисел получила лишь во 2-й пол. 19 в. в связи с потребностями математического анализа. В связи с решением квадратных и кубических уравнений в 16 в. были введены комплексные числа.
Задание № 2:
При каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0<а<4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а>4 - 2 корня (от исходной параболы)
ответ: 4