В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
narutogovno
narutogovno
12.01.2020 04:15 •  Алгебра

Найдите число членов в прогрессии в которой b4+b5=24 b6-b4=24 sn=127

Показать ответ
Ответ:
LB27
LB27
03.10.2020 18:55
Так как b5=b4*q и b6=b4*q², где q - знаменатель прогрессии, то по условию:

b4+b4*q=24,
b4*q²-b4=24

Из первого уравнения находим b4=24/(1+q). Подставляя это выражение во второе уравнение, приходим к уравнению
24*(q²-1)/(1+q)=24*(q-1)=24, откуда q-1=1 и q=2. Тогда b4=24/(1+2)=8,
b1=b4/q³=8/8=1, Sn=1*(2^n-1)/(2-1)=2^n-1=127, 2^n=128, n=log_2(128)=7. ответ: n=7. 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота