1) 4x^2 - 12= 0
4x^2 = 12
x^2=3
x=+-3 (x= плюс минус 3)
x1 = -√3
x2 = √3
2)7x^2 + 5x= 0
x·(7x+5)=0
x=0 или 7x+5=0
x1=0 x2 = -5/7
3)x^2 - 6x - 16 = 0
x^2 + 2x - 8x - 16 = 0
x·(x+2)-8(x+2)=0
(x+2)·(x-8)=0
x+2=0 или x-8=0
x1=-2 x2=8
4)15x^2 - 4x - 3 = 0
15x^2+5x-9x-3=0
5x·(3x+1)-3·(3x+1)=0
(3x+1)·(5x-3)=0
3x+1=0 или 5x-3=0
3x=-1 5x=3
x=-1/3 x=3/5
5)x^2 - 7x + 4 = 0
D=7^2-4·1·4=49-16=33
\frac{7-\sqrt{33} }{2} https://tex.z-dn.net/?f=%5Cfrac%7B7-%5Csqrt%7B33%7D%20%7D%7B2%7D%20
x1=7-√33/2 (7-√33, а под ними черта дроби, которая делит эту разность на 2)
x2=7+√33/2
6)x^2 + 5x + 9 = 0
x=-5±√5²-4x·1·9 и разделить на 2·1
x=-5±√25-36 и разделить на 2
x=-5±√-11 и разделить на 2
дальше решить вроде нельзя(
Объяснение:
А1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.
1) 4x^2 - 12= 0
4x^2 = 12
x^2=3
x=+-3 (x= плюс минус 3)
x1 = -√3
x2 = √3
2)7x^2 + 5x= 0
x·(7x+5)=0
x=0 или 7x+5=0
x1=0 x2 = -5/7
3)x^2 - 6x - 16 = 0
x^2 + 2x - 8x - 16 = 0
x·(x+2)-8(x+2)=0
(x+2)·(x-8)=0
x+2=0 или x-8=0
x1=-2 x2=8
4)15x^2 - 4x - 3 = 0
15x^2+5x-9x-3=0
5x·(3x+1)-3·(3x+1)=0
(3x+1)·(5x-3)=0
3x+1=0 или 5x-3=0
3x=-1 5x=3
x=-1/3 x=3/5
5)x^2 - 7x + 4 = 0
D=7^2-4·1·4=49-16=33
\frac{7-\sqrt{33} }{2} https://tex.z-dn.net/?f=%5Cfrac%7B7-%5Csqrt%7B33%7D%20%7D%7B2%7D%20
x1=7-√33/2 (7-√33, а под ними черта дроби, которая делит эту разность на 2)
x2=7+√33/2
6)x^2 + 5x + 9 = 0
x=-5±√5²-4x·1·9 и разделить на 2·1
x=-5±√25-36 и разделить на 2
x=-5±√-11 и разделить на 2
дальше решить вроде нельзя(
Объяснение:
А1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.