Поставь точку Р(1; 0) в координатной плоскости. Она на оси х на расстоянии =1 от нуля. a) Теперь смотри: она должна попасть в точку (-1;0). Точка Р должна повернуться на 180 градусов. Так? 180 градусов соответствует числу π. Т.е. Точку Р надо повернуть на а =π. Но ведь можно в эту же точку попасть, крутанувшись не на 180 градусов, а на 180+360 =180 + 360·1; 180+720= 180 + 360·2, 180 + 360·3 ;... Итак, 360 - это полный оборот (2π), а рядом стоит множитель, который показывает число оборотов. Он обозначен буквой к∈Z (k- целое число) ответ а = π + 2πк, где к ∈ Z (а - это угол) б) Точка Р должна попасть в точку (1;0). Это значит, она должна остаться на месте. Можно точку Р крутить на целое число оборотов и она будет оставаться на месте. ответ а = 2πк,к ∈Z в) Точка Р должна попасть в точку (0; 1). Эта точка на оси у. Т.е. точка Р должна повернуться на 90 градусов (π/2) и плюс ещё целое число полных оборотов. ответ а = π/2 + 2πк, где к∈Z г) Точка Р должна попасть в точку (0; -1). Эта точка на оси у , ниже нуля . чтобы точка Р попала в точку (0; -1) , надо, чтобы она повернулась на 270 градусов (3π/2) или на -90 (-π/2). И опять целое число оборотов. ответ а = -π/2 + 2πк, где к ∈Z
1) Первое уравнение параболы. Если коэффициент перед х² отрицателен, то ветви её идут вниз. Для построения надо задаться значениями х и по формуле высчитать значения у. По этим данным строится кривая. Второе уравнение - прямая у = -х. Она пересекает параболу в двух точках: х₁ = 2,56 х₂ = -1,56. Вот данные для параболы: х -3 -2 -1 0 1 2 3 4 у=-x^2+4 -5 0 3 4 3 0 -5 -12 Точки пересечения можно определить аналитически, решив систему: у = -х²+4 у = -х Если из второго уравнения вычесть первое, то получим квадратное уравнение х²-х-4=0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-1)^2-4*1*(-4)=1-4*(-4)=1-(-4*4)=1-(-16)=1+16=17; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√17-(-1))/(2*1)=(√17+1)/2=√17/2+1/2=√17/2+0.5≈2.56155281280883; x_2=(-√17-(-1))/(2*1)=(-√17+1)/2=-√17/2+1/2=-√17/2+0.5≈-1.56155281280883. 2) Решается аналогично.
Итак, 360 - это полный оборот (2π), а рядом стоит множитель, который показывает число оборотов. Он обозначен буквой к∈Z (k- целое число)
ответ а = π + 2πк, где к ∈ Z (а - это угол)
б) Точка Р должна попасть в точку (1;0). Это значит, она должна остаться на месте. Можно точку Р крутить на целое число оборотов и она будет оставаться на месте. ответ а = 2πк,к ∈Z
в) Точка Р должна попасть в точку (0; 1). Эта точка на оси у. Т.е. точка Р должна повернуться на 90 градусов (π/2) и плюс ещё целое число полных оборотов.
ответ а = π/2 + 2πк, где к∈Z
г) Точка Р должна попасть в точку (0; -1). Эта точка на оси у , ниже нуля . чтобы точка Р попала в точку (0; -1) , надо, чтобы она повернулась на 270 градусов (3π/2) или на -90 (-π/2). И опять целое число оборотов.
ответ а = -π/2 + 2πк, где к ∈Z
Если коэффициент перед х² отрицателен, то ветви её идут вниз.
Для построения надо задаться значениями х и по формуле высчитать значения у. По этим данным строится кривая.
Второе уравнение - прямая у = -х. Она пересекает параболу в двух точках: х₁ = 2,56 х₂ = -1,56.
Вот данные для параболы:
х -3 -2 -1 0 1 2 3 4
у=-x^2+4 -5 0 3 4 3 0 -5 -12
Точки пересечения можно определить аналитически, решив систему: у = -х²+4
у = -х
Если из второго уравнения вычесть первое, то получим квадратное уравнение х²-х-4=0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-4)=1-4*(-4)=1-(-4*4)=1-(-16)=1+16=17;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√17-(-1))/(2*1)=(√17+1)/2=√17/2+1/2=√17/2+0.5≈2.56155281280883;
x_2=(-√17-(-1))/(2*1)=(-√17+1)/2=-√17/2+1/2=-√17/2+0.5≈-1.56155281280883.
2) Решается аналогично.