1) (a + 8)^2;
(a+8)^2=a^2+16a+ 64
2) (b − 2)^2;
(b-2)^2=b^2-4b+4
3) (7 + c)^2;
(7+c)^2=49+4c+c^2
4) (6 − d)^2;
(6-d)^2=36-12d+d^2
5) (2m + 1)^2;
(2m+1)^2= 4m^2+4m+1
6) (4x − 3)^2;
(4x-3)^2=16x^2-24x+9
7) (5m − 4n)^2;
(5m-4n)^2=25m^2-40mn+16n^2
8) (10c + 7d)^2;
(10c+7d)^2=100c^2+140cd+49d^2
9) (4x − 1/8y)^2;
(4x-1/8y)^2=16x^2-y+1/64y^2
10) (0,3a + 0,9b)^2;
(0,3a+0,9b)=0,09a^2+0,27ab+0,81b^2
11) (c^2 − 6)^2;
(c^2-6)^2=c^4-12c^2+36
12) (15 + k^2)^2;
(15+k^2)^2=225+30k^2+k^4
13) (m^2 − 3n)^2;
(m^2-3n)^2=m^4-6m^2 n+9n^2
14) (m^4 − n^3)^2;
(m^4-n^3)=m^8-2m^4 n^3+ n^6
15) (5a^4 − 2a^7)^2.
(5a^4-2a^7)^2= 25a^8-20a^11+4a^14
Объяснение:
1) (a + 8)^2;
(a+8)^2=a^2+16a+ 64
2) (b − 2)^2;
(b-2)^2=b^2-4b+4
3) (7 + c)^2;
(7+c)^2=49+4c+c^2
4) (6 − d)^2;
(6-d)^2=36-12d+d^2
5) (2m + 1)^2;
(2m+1)^2= 4m^2+4m+1
6) (4x − 3)^2;
(4x-3)^2=16x^2-24x+9
7) (5m − 4n)^2;
(5m-4n)^2=25m^2-40mn+16n^2
8) (10c + 7d)^2;
(10c+7d)^2=100c^2+140cd+49d^2
9) (4x − 1/8y)^2;
(4x-1/8y)^2=16x^2-y+1/64y^2
10) (0,3a + 0,9b)^2;
(0,3a+0,9b)=0,09a^2+0,27ab+0,81b^2
11) (c^2 − 6)^2;
(c^2-6)^2=c^4-12c^2+36
12) (15 + k^2)^2;
(15+k^2)^2=225+30k^2+k^4
13) (m^2 − 3n)^2;
(m^2-3n)^2=m^4-6m^2 n+9n^2
14) (m^4 − n^3)^2;
(m^4-n^3)=m^8-2m^4 n^3+ n^6
15) (5a^4 − 2a^7)^2.
(5a^4-2a^7)^2= 25a^8-20a^11+4a^14
Объяснение:
а) 5х2 = 9х + 2; б) -х2 = 5x - 14;
в) 6х + 9 = х2; г) z - 5 = z2 - 25;
д) у2 = 520 - 576; е) 15у2 - 30 = 22y + 7;
ж) 25р2 = 10p - 1; з) 299х2 + 100x = 500 - 101х2. ответ:а) 5х2 = 9х + 2; 5х2 - 9х - 2 = 0; D = 81 + 4 • 5 • 2 = 81 + 40= 121; х = (9±11)/10; х1 = -0,2; х2 = 2;
б) -х2 = 5x - 14; х2 + 5х - 14 = 0; D = 25 + 4 • 14 = 81; х = (-5±9)/2; х1 = -7; х2 = 2;
в) 6х + 9 = х2; х2 - 6х - 9 = 0; D = 36 + 4 • 9 = 36 + 36 = 72; х = (6±√72)/2; = 3 ± 3√2;
г) z - 5 = z2 - 25; z2 - z - 20 = 0; D = 1 + 80 = 81; х = (1±9)/2;; х1 = -4; х2 = 5;
д) у2 = 520 - 576; у2 - 52у + 576 = 0; D1 = 262 - 576 = 676 - 576 = 100; х = (26±10)/1; х1 = 16; х2 = 36;
е) 15у2 - 30 = 22y + 7; 15у2 -22у - 37 = 0; D = 112 + 37 • 15 = 676; х = (11±26)/15; х1 = -1; х2 = 37/15 = 2 7/15;
ж) 25р2 = 10p - 1; 25р2 - 10р + 1; D1 = 25 - 25 = 0; p = 5/25 = 1/5;
з) 299х2 + 100x = 500 - 101х2; 400х2 + 100х - 500 = 0; 4х2 + х - 5 = 0; D = 1 + 4 • 4 • 5 = 81; х = (-1±9)/8; х1 = -1 1/4; х2 = 1.