A) 1.7-0.3x=2+1.7x (переносим с буквой влево, свободные числа вправо) -0.3х-1.7х=2-1.7 -2х=0.3 -х=0.15 х=-0.15 Б)13х-14)-(15+6х)=-3х-3(приблизительно тоже самое, только еще и скобки раскрыть 13х-14-15-6х=-3х-3 13х-(-3х)-6х=-3-(-15)-(-14) 10х=26 х=5/13 В)3х+1=4 (Не знаю как жест, так напишу)(тут не сложно, просто число отрицательным не будет, т.к. под модулем 3х=4-1 3х=3 х=1 Г)5х+3(3х+7)=35(Тут так же раскрываем скобки, только еще с коэфицентом перед ними, т.е. умножим, то что в скобках 5х+9х+21=35 14х=14 х=1 Д)8х-(7х+8)=9(Думаю тут понятно, знаки местами меняются, из-за минуса перед скобкой. 8х-7х-8=9 х=17
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
-0.3х-1.7х=2-1.7
-2х=0.3
-х=0.15
х=-0.15
Б)13х-14)-(15+6х)=-3х-3(приблизительно тоже самое, только еще и скобки раскрыть
13х-14-15-6х=-3х-3
13х-(-3х)-6х=-3-(-15)-(-14)
10х=26
х=5/13
В)3х+1=4 (Не знаю как жест, так напишу)(тут не сложно, просто число отрицательным не будет, т.к. под модулем
3х=4-1
3х=3
х=1
Г)5х+3(3х+7)=35(Тут так же раскрываем скобки, только еще с коэфицентом перед ними, т.е. умножим, то что в скобках
5х+9х+21=35
14х=14
х=1
Д)8х-(7х+8)=9(Думаю тут понятно, знаки местами меняются, из-за минуса перед скобкой.
8х-7х-8=9
х=17
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1