Нарисуйте в тетради таблицу элементарных событий опыта Где игральную кость бросают дважды закрыто таблица Элементарные события благоприятствующие событиюНарисуйте в тетради таблицу элементарных событий опыта Где игральную кость бросают дважды закрасьте в таблице Элементарные события благоприятствующие событию А вы были одинаковые числа B при каждом броске выпало число очков кратное трем в сумочку при первом и втором ростках равна 5 Г произведение выпавших очков равна 10
Вариант Б1:
1Дано:
АО=DO
<1=<2
Док-ть: тр. АОВ=тр. DOC
Доказательство:
1) <ВАО+<1 = 180° (смежные)
<CDO+<2 = 180° (смежные)
<ВАО = 180 - <1
<CDO = 180 - <2
Т.к. <1 и <2 равны (по усл.), то:
<BAO=<CDO
2) Рассмотрим тр-ки AOB и DOC:
<BAO=<CDO (доказано)
<BOA = <COD (вертик.)
AO=DO (по усл.)
Значит,
тр AOB = тр DOC
Доказано.
2Дано:
ABCD — четырехугольник
AD=BC, AB = CD
Доказать: <А = <С
Доказательство:
1) Доп. построение — диагональ BD
2) Рассм. тр-ки ABD и CBD:
AD = BC, AB = CD (по усл.)
BD — общая.
Значит,
тр ABD = тр CBD
3) В равных треугольниках все соответствующие элементы равны.
Значит,
<A = <C
<A = <CДоказано.
3Дано:
ABCD — четырёхугольник
BD, AC — диагонали.
тр ABC = тр CDA
Доказать: тр ABD = тр CDB
Доказательство:
1) Т. к. тр-ки ABC и CDA равны, то:
AD = BC
AB = CD
2) Рассмотрим тр-ки ABD и CDB:
AD = BC, AB = CD (док.)
BD — общая
Значит,
тр ABD = тр CDB
Доказано.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так