В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Катюшенька1601
Катюшенька1601
23.09.2020 22:42 •  Алгебра

Написать уравнение параболы если известно что она проходит через точку B, а её вершиной является точка H B(-1;5) H(2;-4)

Показать ответ
Ответ:
Taras229
Taras229
27.09.2022 08:08
1) 2 целых 1\2*(2\15-3 целых 5\6)+1\4 = 5/2*(2/15 - 23/6) +1/4 = 5/2*(18/90 - 345/90) +1/4 = 5/2*327/90 +1/4 = 327/36 + 1/4 = 327/36+9/36 = 336/36 = 9 целых 12/36 = 9 целых 1/3

2) -1 целая 1\7*(4\5+19\20)*(6 целых 5\6+4 целых 2\3) = -8/7*(16/20+19/20)*(41/6+14/3) = -8/7*35/20*(41/6+28/6) = -10/5*69/6 = -2*69/6 = -69/3 = -23

3) (6 целых 3\8-2целых 3\4)*(-4)+7\18*9 = (51/8-11/4)*(-4)+7/2 = (51/8-22/8)*(-4)+7/2 = 29/8*(-4)+7/2 = -29/2+7/2 = -22/2 =  -11

4) 9 целых 1\6:(4 целых 1\3-8)+24*3\8 = 55/6:(13/3-24/3)+9 = 55/6:(-11/3)+9 = 55/6*(-3/11)+9 = -5/2+9 = 6,5
0,0(0 оценок)
Ответ:
popkaf
popkaf
11.04.2021 14:14
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота