Используем формулу n-го члена арифметической прогресии a (n)=a1+d(n-1) В конце работы грузовик перевозит 270 тонн, а работа была выполнена за 15 дней, значит а15=270 (а15 читается а пятнадцатая 15 пишется внизу) , В первый день он отвёз 4 т, значит а1=4, всего он работал 15 дней n=15, Найдём число тонн, на которое ежедневно увеличивались перевозки.это d -разность арифметической прогресии.
270=4+d(15-1) 270-4=14d d=19
Найдём теперь, сколько грузовик отвёз на 6-ой день, т.е. найдём а6 а6=4+19(6-1)=4+95=99 т.
Вот подобный пример по нему, найди и решать научишься )
Сумма первых трёх членов геометрической прогрессии вычисляется по формуле:
S(3) = b1(q³ - 1) / (q-1)
По осномвному свойству пропорции:
S(3) * (q-1) = b1(q³-1)
6.2(q³-1) = 80.6 * (q-1)
Разделим обе части уравнения на 6.2:
q³-1 = 13(q-1)
(q³ - 1) - 13(q-1) = 0
(q-1)(q² + q + 1) - 13(q-1) = 0
(q-1)(q² + q + 1 - 13) = 0
q - 1 = 0 или q² + q + 1 - 13 = 0
q = 1 q² + q - 12 = 0
q1 = -4; q2 = 3
Решая кубическое уравнение, мы получили, что знаменатель может быть равен одновременно и 1, и -4, и 3. Такого, естественно, быть не может. Поэтому определим тот знаменатель, который нам нужен, просто подставив его в формулу для расчёта суммы 3 первых членов.
6.2(1³ - 1) / (1 - 1) явно не равно 80.6(более того, это выражение даже не имеет смысла, поскольку знаменатель при q = 1 обращается в 0). Значит, значение q = 1 нам не подходит. Продолжим проверку.
Пусть q = 3, тогда подставляя, получаем следующее:
6.2(3³ - 1) / (3 - 1) = 6.2 * 26 / 2 = 80.6 - как раз то, что нам нужно. Но проверим на всякий случай q = -4.
a (n)=a1+d(n-1)
В конце работы грузовик перевозит 270 тонн, а работа была выполнена за 15 дней, значит а15=270 (а15 читается а пятнадцатая 15 пишется внизу) , В первый день он отвёз 4 т, значит а1=4, всего он работал 15 дней n=15, Найдём число тонн, на которое ежедневно увеличивались перевозки.это d -разность арифметической прогресии.
270=4+d(15-1)
270-4=14d
d=19
Найдём теперь, сколько грузовик отвёз на 6-ой день, т.е. найдём а6
а6=4+19(6-1)=4+95=99 т.
Сумма первых трёх членов геометрической прогрессии вычисляется по формуле:
S(3) = b1(q³ - 1) / (q-1)
По осномвному свойству пропорции:
S(3) * (q-1) = b1(q³-1)
6.2(q³-1) = 80.6 * (q-1)
Разделим обе части уравнения на 6.2:
q³-1 = 13(q-1)
(q³ - 1) - 13(q-1) = 0
(q-1)(q² + q + 1) - 13(q-1) = 0
(q-1)(q² + q + 1 - 13) = 0
q - 1 = 0 или q² + q + 1 - 13 = 0
q = 1 q² + q - 12 = 0
q1 = -4; q2 = 3
Решая кубическое уравнение, мы получили, что знаменатель может быть равен одновременно и 1, и -4, и 3. Такого, естественно, быть не может. Поэтому определим тот знаменатель, который нам нужен, просто подставив его в формулу для расчёта суммы 3 первых членов.
6.2(1³ - 1) / (1 - 1) явно не равно 80.6(более того, это выражение даже не имеет смысла, поскольку знаменатель при q = 1 обращается в 0). Значит, значение q = 1 нам не подходит. Продолжим проверку.
Пусть q = 3, тогда подставляя, получаем следующее:
6.2(3³ - 1) / (3 - 1) = 6.2 * 26 / 2 = 80.6 - как раз то, что нам нужно. Но проверим на всякий случай q = -4.
6.2((-4)³ - 1) / (-4 - 1) = 6.2 * (-65) / (-5) = -403 / (-5) = 80.6 - сюрпризец
Подсчёты показали, что возможны аж два варианта знаменателя, чего никак нельзя было ожидать. Таким образом, q = 3 или q = -4
Теперь найдём b3. Вполне очевидно, что будут тоже 2 значения.
b3 = b1q² = 6.2 * 3² = 6.2 * 9 = 55.8 - это первый вариант
b3 = 6.2 * (-4)² = 6.2 * 16 = 99.2 - вторая возможность
Таким образом, возможны два варианта прогрессии.