набор точек внутри выпуклого 100-угольника назовём хорошим, если любые три вершины нашего 100-угольника образуют треугольник, внутри которого есть точка этого набора. какое наименьшее количество точек может содержать хороший набор?
(320/y) - (320/x) = 8/3, ( 8/3 - это 2 часа 40 минут в часах) С момента выезда мотоцикла машина проехала 2х км, а мотоцикл 2у км. А вместе они проехали 320 - 2х км, так как машина до выхода мотоцикла проехала 2х км. тогда второе уравнение 2x + 2y = 320 - 2x, или 4x + 2y = 320, делим второе уравнение на 2: 2 x + y = 160, отсюда у = 160 - 2х. Первое уравнение после упрощения: 120x - 120y - xy = 0. Подставим сюда вместо у выделенное выражение, получим после упрощения: x^2 + 100x - 9600 = 0 , x = - 160 не подходит по смыслу задачи, x = 60 км/ч - это скорость машины. Скорость мотоцикла: y = 160 - 120 = 40 км/ч
С момента выезда мотоцикла машина проехала 2х км, а мотоцикл 2у км. А вместе они проехали 320 - 2х км, так как машина до выхода мотоцикла проехала 2х км. тогда второе уравнение 2x + 2y = 320 - 2x, или 4x + 2y = 320, делим второе уравнение на 2:
2 x + y = 160, отсюда у = 160 - 2х. Первое уравнение после упрощения:
120x - 120y - xy = 0. Подставим сюда вместо у выделенное выражение, получим после упрощения: x^2 + 100x - 9600 = 0 , x = - 160 не подходит по смыслу задачи,
x = 60 км/ч - это скорость машины. Скорость мотоцикла: y = 160 - 120 = 40 км/ч
1.
Пусть первая бригада может выполнить работу за x дней ,тогда
вторая бригада может выполнить эту работу за 5x дней
За день
первая бригада выполнит 1/x часть работы ,
вторая бригада _ 1/5x часть работы ,
вместе_ (1/x +1/5x) часть работы.
можем написать уравнение
1/x +1/5x = 1/4 ⇒ x = 4, 8 (день) и 5*4,8 = 24 (день)
---
3.
Решите уравнение заменой переменных (x²-2x)²+12(x²-2x)+11=0.
замена t = x²- 2x
t² +12t +11=0 ; D₁ = (12/2)² -11 =6²- 11=25 =5²
t₁ = -6 -5 = -11 ⇒ x²-2x = -11 ⇔ x²-2x+11=0 ⇔(x-1)²+10=0 ⇒ x∈∅ .
t₂ = - 6 +5 = -1 ⇒ x²-2x = -1 ⇔ x²-2x+1=0 ⇔(x-1)²=0 ⇒ x=1 .
---
4.
Решить иррациональное уравнение √(2x²-3x+5)=√(x²+x+1)
ОДЗ : { 2x²- 3x+5 ≥ 0 , x²+x+1≥ 0 . ⇒ x ∈R .
* * * D(1) =3² - 4*2*5 = - 31 < 0 , a=2>0 и D(2) = (-1)² -4*1*1 = -3<0 * * *
2x²-3x+5= x²+x+1 ;
x² -4x +4 =0 ;
(x-2)² =0 ;
x=2 .