Решение. Пусть было x канистр, в каждой по 50 л бензина, всего бензина 50х л.
Если взять 40-литровые канистры в количестве на 12 больше и полностью их заполнить, то по условию бензина будет больше, чем есть, а если потом удалить одну канистру, то меньше. Значит, имеем двойное неравенство:
(x + 11)*40 < 50x < (x + 12)*40
Сокращаем сначала на 10, приводим подобные, и в результате получаем такое двойное неравенство:
44 < x < 48.
Т. е. канистр было больше 44, но меньше 48.
Если взять 70-литровые канистры в количестве на 12 меньше, и полностью их заполнить, то бензина будет больше, а если убрать ещё одну, то меньше, чем есть. Значит, имеем такое двойное неравенство:
(x - 13)*70 < 50x < (x - 12)*70
Отсюда после всех преобразований:
42 < x < 45,5
Поскольку два полученных неравенства выполняются одновременно, то:
44 < x < 45,5
Количество канистр явно целое. Имеется только одно целое число, удовлетворяющее этому двойному неравенству, это 45. Значит всего было 45 канистр. А бензина 45*50 = 2250 л.
1) Метод подстановки, Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.1. Выразить у через х из одного уравнения системы. 2. Подставить полученное выражение вместо у в другое уравнение системы. 3. Решить полученное уравнение относительно х. 4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге. 5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге. 2)Метод алгебраического сложения Знаком вам из курса алгебры 7-го класса, самый легкий 3)Метод введения новых переменных Когда в двух уравнениях системы повторяется что-то, это можно заменить путем введения новой перемнной. 4)графически Построить для каждого уравнения его график и найти точку пересечения, это и будет ответ!
2250 литров
Объяснение:
ответ:2250литров
Решение. Пусть было x канистр, в каждой по 50 л бензина, всего бензина 50х л.
Если взять 40-литровые канистры в количестве на 12 больше и полностью их заполнить, то по условию бензина будет больше, чем есть, а если потом удалить одну канистру, то меньше. Значит, имеем двойное неравенство:
(x + 11)*40 < 50x < (x + 12)*40
Сокращаем сначала на 10, приводим подобные, и в результате получаем такое двойное неравенство:
44 < x < 48.
Т. е. канистр было больше 44, но меньше 48.
Если взять 70-литровые канистры в количестве на 12 меньше, и полностью их заполнить, то бензина будет больше, а если убрать ещё одну, то меньше, чем есть. Значит, имеем такое двойное неравенство:
(x - 13)*70 < 50x < (x - 12)*70
Отсюда после всех преобразований:
42 < x < 45,5
Поскольку два полученных неравенства выполняются одновременно, то:
44 < x < 45,5
Количество канистр явно целое. Имеется только одно целое число, удовлетворяющее этому двойному неравенству, это 45. Значит всего было 45 канистр. А бензина 45*50 = 2250 л.
Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.1. Выразить у через х из одного уравнения системы.
2. Подставить полученное выражение вместо у в другое уравнение системы.
3. Решить полученное уравнение относительно х.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.
2)Метод алгебраического сложения
Знаком вам из курса алгебры 7-го класса, самый легкий
3)Метод введения новых переменных
Когда в двух уравнениях системы повторяется что-то, это можно заменить путем введения новой перемнной.
4)графически
Построить для каждого уравнения его график и найти точку пересечения, это и будет ответ!