На сторонах угла ABC отложены равные отрезки BA = BC = 8,5 см и проведена биссектриса угла. На биссектрисе находится точка D, расстояние которой до точки C равно 5,1 см
Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
Среди чисел от 1 до 36 18 четных и 18 нечетных В квадрате 2на 2 четыре числа. Чтобы их сумма была четной, достаточно, чтобы они все были четными, или все были нечетными или два четных и два нечетных В квадрате 6 на 6 умещается 9 квадратов размером два на два. Будем раскладывать в них четные и нечетные числа. Нас интересует плохой вариант, когда в каком-то квадрате одно нечетное число. Даже если во всех девяти квадратах одно нечетное, то остальные 9 нечетных чисел обязательно дадут ситуацию, когда в какой-то клетке окажется 2 нечетных. Пусть даже в каком-то кварате одно нечетное, а в друнгом три. Но такого случая, что во всех клетках одно нечетное или три нечетных не будет. Обязательно где-то окажется, что нечетных два, три или четыре. А там где два нечетных, два остальных четные.
В квадрате 2на 2 четыре числа. Чтобы их сумма была четной, достаточно, чтобы они все были четными, или все были нечетными или два четных и два нечетных
В квадрате 6 на 6 умещается 9 квадратов размером два на два.
Будем раскладывать в них четные и нечетные числа. Нас интересует плохой вариант, когда в каком-то квадрате одно нечетное число. Даже если во всех девяти квадратах одно нечетное, то остальные 9 нечетных чисел обязательно дадут ситуацию, когда в какой-то клетке окажется 2 нечетных. Пусть даже в каком-то кварате одно нечетное, а в друнгом три. Но такого случая, что во всех клетках одно нечетное или три нечетных не будет. Обязательно где-то окажется, что нечетных два, три или четыре. А там где два нечетных, два остальных четные.