На полиці стоять 10 книг з математики, 8 книг з фізики та 5 книг з біології.Навмання вибирають 11 книг.Яка ймовірність того що серед вибраних книг виявиться 6 книг з математики, 3 книги з фізики та 2 книги з біології?
7х+3у=1, 2х-6у=-10 выражаем в каждом уравнение у через х: 3у=1-7х, у=1-7х/3 -6у=-10-2х, у=10+2х/6 у= 1-7х 3 у= 5+х 3 Это линейные функции, график "прямая" Строим график 1 функции х| 0 | 1| y|1/3|-2| построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2) соединили эти точки прямой. Строим график 2 функции: х| 0 | 1 | y|1 1/3| 2 | В то же прямоугольной системе координат строим точки М(0;1 1/3),Р(1;2) соединяем точки прямой. Прямые пересекаются в точке Д(-1/2;1 1/2) ответ: (-1/2; 1 1/2)
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
2х-6у=-10
выражаем в каждом уравнение у через х:
3у=1-7х, у=1-7х/3
-6у=-10-2х, у=10+2х/6
у= 1-7х
3
у= 5+х
3
Это линейные функции, график "прямая"
Строим график 1 функции
х| 0 | 1|
y|1/3|-2|
построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2)
соединили эти точки прямой.
Строим график 2 функции:
х| 0 | 1 |
y|1 1/3| 2 |
В то же прямоугольной системе координат строим точки
М(0;1 1/3),Р(1;2)
соединяем точки прямой.
Прямые пересекаются в точке Д(-1/2;1 1/2)
ответ: (-1/2; 1 1/2)
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: