№1 Так как треугольник прямоугольный, значит один угол равен 90 градусов. Нам дан еще один угол, который равен 29 гр. А мы знаем, что в треугольнике сумма всех углов равна 180 градусов. => 180-(90+29)=180-119=61 гр. ответ: 61 №2 Так как треугольник равнобедренный, то углы при основании равны. Угол А= углу С. Можно найти любой из этих углов: (180- угол В):2 =(180-120):2=30 Получаем что угол С и А равны по 30 гр. Высота равна 8см. Сторону ВС можно найти с синуса угла С. (Синус 30гр=1/2) 1/2=8/ВС ВС=4 ответ: 4 см.
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Так как треугольник прямоугольный, значит один угол равен 90 градусов. Нам дан еще один угол, который равен 29 гр. А мы знаем, что в треугольнике сумма всех углов равна 180 градусов. =>
180-(90+29)=180-119=61 гр.
ответ: 61
№2
Так как треугольник равнобедренный, то углы при основании равны. Угол А= углу С. Можно найти любой из этих углов:
(180- угол В):2 =(180-120):2=30
Получаем что угол С и А равны по 30 гр.
Высота равна 8см.
Сторону ВС можно найти с синуса угла С. (Синус 30гр=1/2)
1/2=8/ВС
ВС=4
ответ: 4 см.
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.