На малюнку побудовано графік оберненої пропорційності, заданої формулою . Знайдіть за графіком: а) значення у, яке відповідає значенню х, що дорівнює –4; –2; –1; 1; 2; 4;
б) значення х, якому відповідає значення у, що дорівнює –4; –2; –1; 1; 2;4 Графік знизу
Много избыточных данных в . видимо чтобы запутать. мне представляется все гораздо проще. если скорость каждого автобуса увеличится в двое, то в двое увеличится и их общая скорость сближения, следовательно в двое уменьшиться время в пути. значит и к месту встречи они доберутся в двое быстрее. и встретятся а во сколько они выехали? мы не знаем их время в пусть выехали они в 6 утра. встретились в 12 дня. в пути были 12-6=6 часов. увеличив в двое скорость - в двое уменьшится скорость в пути 6: 2=3 ч. встретятся они в 6+3=9 ч. или еще как вариант, но не уверен в правильности обозначим скорости автобусов через х и у, тогда х+у в 12.00 2х+у в 12.00 - 0.56 = 11.04 х+2у в 12.00 - 1.05 = 10.55 если сложим два последних уравнения (2х+у)+(х+2у) и вычтем первое (2х+у)+(х++у)=2х+у+х+2у-х-у=2х+2у а теперь попробуем тоже самое сделать с правыми частями 11.04+10.55-12.00=21.59 - 12.00= 9.59 получается так, что встреча будет в 9.59
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
9,90,99
Объяснение:
Сумма бесконечно убывающей геометрической прогрессии:
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).