Р = 2(a+b) = 20 a+b = 10 диагональ прямоугольника (по т.Пифагора) = √(a² + b²) можно рассмотреть и квадрат диагонали (для простоты вычислений), т.к. функция √х -- монотонно возрастающая, т.е. чем меньше (х), тем меньше √х d² = a² + b² = a² + (10-a)² = 2a² + 100 - 20a для определения экстремума -- рассмотрим производную))) f ' (a) = 4a - 20 = 0 а = 5 и b = 5 --- это квадрат))) то, что это именно минимум, можно проверить устно))) если возьмете стороны чуть другие (например, 4 и 6), то диагональ будет увеличиваться)))
Решение Пусть х км/ч - собственная скорость катера, тогда (х + 5) км/ч - его скорость по течению, а (х - 5) км/ч - против течения. Время затраченное катером на путь по течению 45 / (х + 5) ч, а против течения 10 / (х - 5) ч. По условию задачи на весь путь затрачено 2 часа. Составим и решим уравнение: 45 / (х + 5) + 10 / (х - 5) = 2
a+b = 10
диагональ прямоугольника (по т.Пифагора) = √(a² + b²)
можно рассмотреть и квадрат диагонали (для простоты вычислений), т.к.
функция √х -- монотонно возрастающая, т.е. чем меньше (х), тем меньше √х
d² = a² + b² = a² + (10-a)² = 2a² + 100 - 20a
для определения экстремума -- рассмотрим производную)))
f ' (a) = 4a - 20 = 0
а = 5 и b = 5 --- это квадрат)))
то, что это именно минимум, можно проверить устно)))
если возьмете стороны чуть другие (например, 4 и 6), то диагональ будет увеличиваться)))
Пусть х км/ч - собственная скорость катера, тогда (х + 5) км/ч - его скорость по течению, а (х - 5) км/ч - против течения. Время затраченное катером на путь по течению 45 / (х + 5) ч, а против течения 10 / (х - 5) ч. По условию задачи на весь путь затрачено 2 часа. Составим и решим уравнение:
45 / (х + 5) + 10 / (х - 5) = 2
45*(x - 5) + 10*(x + 5) = 2*(x - 5)*(x + 5)
(x - 5)*(x + 5) ≠ 0, x ≠ - 5; x ≠ 5
45x - 225 + 10x + 50 - 2x² + 50 = 0
2x² - 55x + 125 = 0
D = 3025 - 4*2*125 = 2025
x₁ = (55 - 45)/4
x₁ = 2,5
x₂ = (55 + 45)/4
x₂ = 25
Проверим корни:
х - 5 = 2, 5 - 5 = - 2, 5 скорость катера не может быть отрицательным числом. Поэтому 25 км/ч - собственная скорость катера.
ответ: 25 км/ч.