1) Область определения – множество значений х при которых функция имеет смысл. Область определения D(f) = ( -oo ; + oo) т.к. нет ограничений (нет деления на переменную, нет корней и т.д.)
Заметим что графиком будет парабола Старший коэффициент отрицательный => ветви параболы направлены вниз.
2) Найдем координаты вершины:
Найдем значение функции в вершине
Вершина ( -1 ; 4) Итак Вершина в точке (-1;4) и ветви вниз, значит это наибольшее значение. Теперь легко определить Область значений Значит область значений E(f) = (-oo; 4]
y = - x² - 2x + 3
1) Область определения – множество значений х при которых функция имеет смысл.
Область определения D(f) = ( -oo ; + oo)
т.к. нет ограничений (нет деления на переменную, нет корней и т.д.)
Заметим что графиком будет парабола
Старший коэффициент отрицательный => ветви параболы направлены вниз.
2) Найдем координаты вершины:
Найдем значение функции в вершине
Вершина ( -1 ; 4)
Итак Вершина в точке (-1;4) и ветви вниз, значит это наибольшее значение. Теперь легко определить Область значений
Значит область значений E(f) = (-oo; 4]
3) Промежутки возрастания, убывания:
f(х) возрастает на ( -оо ; - 1 )
f(х) убывает на ( - 1 ; +оо)
4) Нули функции:
- x² - 2x + 3 = 0
x² + 2x - 3 = 0
По теореме Виета
x1+х2 = -2,
x1х2 = -3
x1 = -3
х2 =1
+
_________-3__________________1_________________ - -
5) Промежутки знакопостоянства:
f(х) > 0 при х∈ ( -3 ; 1)
f(х) < 0 при х∈ ( - oo ; -3) ∪ ( 1 ; +оо )
6) Точка пересечения с осью OY ( 0; 3)
Также можно проводить исследование функции с производной.
но это уже другая тема.
https://www.kontrolnaya-rabota.ru/s/equal-many/system-any/?ef-TOTAL_FORMS=52&ef-INITIAL_FORMS=2&ef-MIN_NUM_FORMS=0&ef-MAX_NUM_FORMS=1000&ef-0-s=11x%5E2-7x-10%3Dx%5E2%2B9x-2&ef-1-s=&ef-2-s=&ef-3-s=&ef-4-s=&ef-5-s=&ef-6-s=&ef-7-s=&ef-8-s=&ef-9-s=&ef-10-s=&ef-11-s=&ef-12-s=&ef-13-s=&ef-14-s=&ef-15-s=&ef-16-s=&ef-17-s=&ef-18-s=&ef-19-s=&ef-20-s=&ef-21-s=&ef-22-s=&ef-23-s=&ef-24-s=&ef-25-s=&ef-26-s=&ef-27-s=&ef-28-s=&ef-29-s=&ef-30-s=&ef-31-s=&ef-32-s=&ef-33-s=&ef-34-s=&ef-35-s=&ef-36-s=&ef-37-s=&ef-38-s=&ef-39-s=&ef-40-s=&ef-41-s=&ef-42-s=&ef-43-s=&ef-44-s=&ef-45-s=&ef-46-s=&ef-47-s=&ef-48-s=&ef-49-s=&ef-50-s=&ef-51-s=
Объяснение:ЭТО ССЫЛКА НА РЕШЕНИЕ
УДАЧИ