Рассмотрим, в каких пределах может изменяться величина f=(sin x+0.5)². Мы знаем, что синус может меняться в пределах от -1 до 1. Максимальное значение f=2.25 достигается при sin x = 1 При этом значение y будет минимальным и составит 1.25-2.25 = -1. Максимальное значение у можно получить, если вычесть из 1.25 что-то отрицательное или положительное, но как можно меньшей величины. f - это квадрат некоторого выражения и отрицательным он быть не может. Но при sin x=-0.5 получаем f=0 и y=1.25
1) вершина в точке О(0; 0) 2) ветви параболы направены вниз 3) заполняем таблицу: х= 1 -1 2 -2 1/3 -1/3 у=-3 3 -12 -12 -1/3 -1/3
Чертим систему координат, отмечаем положительное направление стрелками вправо и вверх, подписываем оси вправо - ось х, вверх - ось у, отмечаем начало координат - точку О(0; 0) Далее выбираем единичный отрезок, равный 1 клетке.
Ставим точки из таблицы и отмечаем точку О(0;0), через точки проводим плавную линию, подписываем график у=-3х² . Всё!
Рассмотрим, в каких пределах может изменяться величина f=(sin x+0.5)².
Мы знаем, что синус может меняться в пределах от -1 до 1.
Максимальное значение f=2.25 достигается при sin x = 1
При этом значение y будет минимальным и составит 1.25-2.25 = -1.
Максимальное значение у можно получить, если вычесть из 1.25 что-то отрицательное или положительное, но как можно меньшей величины. f - это квадрат некоторого выражения и отрицательным он быть не может. Но при sin x=-0.5 получаем f=0 и y=1.25
ответ: y ∈ [-1;1.25]
1) вершина в точке О(0; 0)
2) ветви параболы направены вниз
3) заполняем таблицу:
х= 1 -1 2 -2 1/3 -1/3
у=-3 3 -12 -12 -1/3 -1/3
Чертим систему координат, отмечаем положительное направление стрелками вправо и вверх, подписываем оси вправо - ось х, вверх - ось у, отмечаем начало координат - точку О(0; 0)
Далее выбираем единичный отрезок, равный 1 клетке.
Ставим точки из таблицы и отмечаем точку О(0;0), через точки проводим плавную линию, подписываем график у=-3х² . Всё!