Множеством значений функции у =√х является множество неотрицательных чисел, так как выражение √х имеет смысл при
x>0.
Символически записывают:E (у)=(0;+&перевёрнутая), или E(x) = [0;
Поэтому график функции y =
расположен в первой координатной четверти
задача очень
Чтобы выяснить,какая из точек не принадлежит графику достаточно координаты этих точек подставить в функцию,которой задан график.
Если получится верное равенство,то точка принадлежит графику, а если неверное, то не принадлежит.
Данная функция прямая, параллельная оси ОХ, вида
у=k*х+b
k=0
k – угловой коэффициент , b – свободный член(-5) , x – независимая переменная.
у=0*х-5
НО
Мы видим , что данная функция не зависит от Х, при любом его значении у=-5 , то есть можно без расчетов найти точку,которая не принадлежит графику. Это точка 3, потому что у=0,а не -5.
Если мы этого не видим,то подставляем:
1) (0: -5)
-5=0*0-5
-5=-5 - принадлежит
2) (-5:-5)
-5=0*-5-5
-5=-5 - принадлежит
3) (-5: 0 )
0=0*-5-5
0≠-5 - не принадлежит
4) (5: -5 )
-5=0*5-5
-5=-5 - принадлежит
Подставляем значение х во второе уравнения системы
4 * (6 + 3у) + 5у = - 10
24 + 12у + 5у = - 10
17у = - 10 - 24
17 у = - 34
у = - 34 : 17
у = - 2
Поставляем значение у в любое уравнение системы
х - 3 * (-2) = 6 4х + 5 * (-2) = - 10
х + 6 = 6 4х - 10 = - 10
х = 6 - 6 4х = - 10 + 10
х = 0 4х = 0
х = 0 : 4
х = 0
ответ: (0; -2).