График - парабола ( здесь так же указывается направление ветвей параболы. Если переменная a>0 - ветви вверх, если a<0 - ветви вниз. В нашем случае ветви у параболы направлены вверх 1>0 )
D (y): x - любое ( какая бы парабола не была - эта строка неизменна)
1) y = x2 + 2x - 3
График - парабола ( здесь так же указывается направление ветвей параболы. Если переменная a>0 - ветви вверх, если a<0 - ветви вниз. В нашем случае ветви у параболы направлены вверх 1>0 )
D (y): x - любое ( какая бы парабола не была - эта строка неизменна)
Вершина: ( -1; -4 ), т.к.
m ( x ) = -2:2 = -1
n ( y ) = (-1)2 +2(-1) - 3 = -4.
с осью OY: ( 0; -3 ), т.к.
y = 0x2 + 0*2 - 3
y = -3
с осью OX: ( -3; 0 ) и ( 1; 0 ), т.к.
x2 + 2x - 3 = 0
D = 4 - 4*1(-3) = 4 + 12 = 16
x1 = ( -2 - 4 ):2 = -3
x2 = ( -2 + 4 ):2 = 1.
Построим ещё две точки:
x = 2 y = 5
x = -2 y = -3.
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.