Логарифмическая функция с основанием 5>1 возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
3x-2>25 3x>27 x>9 ответ. (9; +∞) 2)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
4х+2>8 4x>8-2 4x>6 x>1,5 ответ. (1,5; +∞) 3)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
ответ. [-1,5; 0,5) 4)Находим ОДЗ:
Логарифмическая функция с основанием 3>1- возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
Система не имеет решений \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -----------------------------(-10)------------(3)------------ //////////////////////// множества не пересекаются
Логарифмическая функция с основанием 5>1 возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
3x-2>25
3x>27
x>9
ответ. (9; +∞)
2)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
4х+2>8
4x>8-2
4x>6
x>1,5
ответ. (1,5; +∞)
3)
Логарифмическая функция с основанием 0<1/2<1 убывающая. Большему значению функции соответствует меньшее значение аргумента. С учетом ОДЗ неравенства получаем систему:
ответ. [-1,5; 0,5)
4)Находим ОДЗ:
Логарифмическая функция с основанием 3>1- возрастающая. Поэтому большему значению функции соответствует большее значение аргумента. С учетом ОДЗ неравенства получаем систему:
Система не имеет решений
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-----------------------------(-10)------------(3)------------
////////////////////////
множества не пересекаются