Может, есть какой-нибудь хитрый решения. Но можно сделать "в лоб".
ОДЗ: x не=3; 2; 1. Потом обе части умножить на знаменатель, раскрыть скобки, перенести все налево, привести подобные и разделить обе части на 2. Получится уравнение: 17x^3 -108x^2 +187x -108 =0. Такие уравнения можно решать подбором корней. Подбор делается из делителей свободного слагаемого, т.е. 12.
Делители 12: 1; 2; 3; 4 и т.д. Отрицательные не подходят, так как сразу видно, что при подстановке их в уравнение 0 не получится (получится отрицательное число). Подставляем 1; 2; 3 - при вычислении 0 не получается. А вот при подстановке х=4 получаем 0=0, т.е. это корень уравнения. Теперь надо выполнить деление столбиком. Многочлен 17x^3 -108x^2 +187x -108 разделить на двучлен x-4. В частном получим трехчлен 17x^2 -40x +27, Этот трехчлен корней не имеет, т.к. дискриминант отрицательный.
Следовательно, уравнение имеет единственный корень х=4
Может, есть какой-нибудь хитрый решения. Но можно сделать "в лоб".
ОДЗ: x не=3; 2; 1. Потом обе части умножить на знаменатель, раскрыть скобки, перенести все налево, привести подобные и разделить обе части на 2. Получится уравнение: 17x^3 -108x^2 +187x -108 =0. Такие уравнения можно решать подбором корней. Подбор делается из делителей свободного слагаемого, т.е. 12.
Делители 12: 1; 2; 3; 4 и т.д. Отрицательные не подходят, так как сразу видно, что при подстановке их в уравнение 0 не получится (получится отрицательное число). Подставляем 1; 2; 3 - при вычислении 0 не получается. А вот при подстановке х=4 получаем 0=0, т.е. это корень уравнения. Теперь надо выполнить деление столбиком. Многочлен 17x^3 -108x^2 +187x -108 разделить на двучлен x-4. В частном получим трехчлен 17x^2 -40x +27, Этот трехчлен корней не имеет, т.к. дискриминант отрицательный.
Следовательно, уравнение имеет единственный корень х=4
f(x) = 2x – ln x
ОДЗ: х>0
f'(x) = 2 – 1/x
f'(x) = 0
2 – 1/x = 0
2х = 1
х = 0,5
разбиваем область определения функции f(x) на интервалы и определяем знак производной f'(x) в этих интервалах
- +
0 0,5
f'(0,25) = 2-1/0,25 = 2-4 = -2 f'(x)<0 ⇒ f(x) убывает
f'(1) = 2-1/1 = 2-1 = 1 f'(x)>0 ⇒ f(x) возрастает
Итак, при х∈(0; 0,5] f(x) убывает
при х ∈[ 0,5; +∞) f(x) возрастает
В точке х = 0,5 производная меняет знак с - на + , следовательно, это точка минимума.
уmin = у(0,5) = 2·0,5 – ln 0,5 ≈ 1 - 0,693 ≈ 0,307