В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Елис13
Елис13
01.08.2021 08:21 •  Алгебра

Мне нужн помш кто может решит этот соч


Мне нужн помш кто может решит этот соч

Показать ответ
Ответ:
amaii
amaii
15.01.2020 20:29

При каких значениях параметра уравнение (x²-(4a-3)x -12a ) / (x²-1) =0 имеет 1 корень .

Решение  :       (x² - (4a - 3)x - 12a ) / (x² - 1 ) = 0  ⇔  

{ x²-(4a-3)x -12a = 0 ;

{x² - 1  ≠  0 . || ОДЗ ||

x²- 1≠ 0⇔x ≠ ± 1  * * * (x+1)(x-1) ≠0⇔ x+1≠0 и x-1 ≠0 ⇔ x ≠ -1 и x ≠ 1 * * *

x² - (4a - 3)x - 12a = 0      

- - -

Если  a =0    * * *  - 12a = 0  * * *

x²-(4a-3)x-12a =0 ⇔x² +3x=0⇔(x+3)x=0⇒x₁ = -3,x₂= 0  два корня

- - -

D=(4a-3)²- 4*1*(-12a) =16a²-24a +9-4*1*(-24a)=16a²+24a+9 = (4a+3)² ≥0

Если  D = 0 ⇔ 4a+3=0⇔ a = - 3/4   x₁=x₂=(4a-3)/2 = - 3 ( кратный корень)

По  уставу   ЕГЭ  _ одно решение    

звучит так: Квадратное уравнение имеет ОДИН корень, если D=0

* * * a = - 3/4 ⇒x²- (4a-3)x -12a =0 ⇔ x²+6x+9 =0 ⇔(x+3)² = 0 ⇒x = -3 * * *

x₁,₂ = (4a-3 ±(4a+3) ) /2 ;

x₁ =(4a-3- 4a- 3) /2 = -3 ;  ясно  x₁ = -3 решение ( ∈ ОДЗ )

* * * уже обеспечен один корень * * *

x₂=(4a-3 +4a+3)/2 = 4a

Для того чтобы уравнение имел только один корень x₂=4a не должно  быть корнем ,  т.е.  4a = - 1  или 4a = 1 .       a = - 1/4  или   a = 1 /4

* * *  [   4a = - 1  ;  4a = 1 . ( совокупность уравнений )  * * *

ответ:   - 3/4  -1/4 ;  1/4 .                  * * * -0,75 ; - 0,25 ;0,25  * * *

* * * P.S. Квадратное уравнение ax²+bx+c =0 ⇔a(x+b/2a)²- D/4a =0 ;a≠0 .

если D = 0 , то  ( x+b/2a)² = 0 ⇒ x₁ = x₂= - b/2a_двукратный корень  * * *

0,0(0 оценок)
Ответ:
tilkamilkap0ct2o
tilkamilkap0ct2o
15.01.2020 20:29

Итак, есть уравнение

\displaystyle \frac{x^2-(4a-3)x-12a}{x^2-1}=0

Сразу накладываем ограничение на знаменатель: x^2-1\neq 0 \Rightarrow x\neq \pm1

Ситуация, когда у заданного в условии уравнения всего 1 корень, это когда D=0 у числителя, и этот корень не равен ни одному из двух значений из нулей знаменателя или же когда D0, но один из корней (именно один) равен одному из двух значений из нулей знаменателя дроби, тогда это значение корнем уравнения являться не будет и благополучно останется другой корень.

Решим уравнение x^2-(4a-3)x-12a=0

Это квадратное уравнение, и что-то мне подсказывает, что дискриминант в нем будет полным квадратом.

D=(-(4a-3))^2-4\cdot 1\cdot (-12a)=16a^2-24a+9+48a = \\= 16a^2+24a+9 = (4a)^2+2\cdot 4a\cdot 3 +3^2 = (4a+3)^2

Впрочем, неудивительно. Для решения квадратного уравнения берется корень, здесь корень из квадрата, да, формально это модуль, но именно при решении квадратных уравнений модуль можно опустить, потому что при объединении всех решений с раскрытия модуля как раз все нормально получается, поэтому его сразу опустим.

\displaystyle x=\frac{4a-3\pm(4a+3)}{2} \Rightarrow x_1=-3; x_2= 4a

Вообще прекрасно, один корень это число, причем которое не входит в нули знаменателя. Ситуация, когда -3 - единственный корень будет при D=0 = (4a+3)^2 \Rightarrow a=-\dfrac{3}{4}

Осталось проверить, когда x_2=4a=\pm 1\Rightarrow a=\pm \dfrac{1}{4}

Теперь запишем ответ, как требуется, по возрастанию десятичные числа через пробел.

ответ: -0.75 -0.25 0.25

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота