В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
57338888
57338888
16.03.2021 18:28 •  Алгебра

мне надо буду очень благодарна

Перейди от математической модели к словесной.
10x+ 4 = 96
5у — 3 = 7х
( ) коров и 4 лошадей ежедневно вместе получали 96 кг сена.
Сколько сена ежедневно скармливали каждой корове и каждой лошади, если 7 коров получали сена на 3 кг
(больше, меньше?), чем 5 лошадей?
(В первое окошко введи число, а не слово.)​

Показать ответ
Ответ:
mrlolik1500
mrlolik1500
30.07.2020 14:43

Объяснение:

1) 2х + 1 = 3х - 4

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

2x-3x = -4-1

-x=-5

Делим обе части на множитель при переменной x (-1)

x=5

ответ: 5.

2) 1,6(5х – 1) = 1,8х – 4,7

Раскроем скобки:

8x-1,6=1,8х-4,7

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

8х-1,8х=-4,7+1,6

6,2х=-3,1

Делим обе части на множитель при переменной x (6,2)

х=-0,5

ответ: -0,5.

3) - 2х + 1 = - х - 6

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

-2х+х=-6-1

-х=-7

Делим обе части на множитель при переменной x (-1)

х=7

ответ: 7.

-

0,0(0 оценок)
Ответ:
helpmepleace2
helpmepleace2
11.02.2021 10:15

f(x) = \dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1}

Совокупность всех первообразных функции f(x) называют неопределенным интегралом:

\displaystyle \int f(x) \, dx = F(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int f(x) \, dx = \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx

Теорема: если функции F и G являются соответственно первообразными функций f и g на промежутке I, то на этом промежутке функция y = F(x) \pm G(x) является первообразной функции y = f(x) \pm g(x):

\displaystyle \int \left(f(x) \pm g(x) \right) \, dx = \int f(x) \, dx \pm \int g(x) \, dx = F(x) \pm G(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx =

\displaystyle = \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, то на этом промежутке функция y = kF(x) является первообразной функции y = kf(x):

\displaystyle \int kf(x) \, dx = k \int f(x) \, dx = kF(x) + C

Тогда \displaystyle \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx =

= \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, отличное от нуля, то на соответствующем промежутке функция y = \dfrac{1}{k} F(kx + b) является первообразной функции y = f(kx + b):

\displaystyle \int f(kx + b) \, dx = \dfrac{1}{k} F(kx + b) + C,

где C — произвольная постоянная.

Найдем каждый интеграл по отдельности:

1) \ \displaystyle \int \dfrac{dx}{(3 - 5x)^{4}} = \int (3 - 5x)^{-4} \, dx = \dfrac{1}{-5} \cdot \dfrac{(3 - 5x)^{-4 + 1}}{-4 + 1} + C =

= \dfrac{1}{15(3 - 5x)^{3}} + C

2) \ \displaystyle \int \dfrac{dx}{\cos^{2}2x} = \dfrac{1}{2} \, \text{tg} \, 2x + C

3) \ \displaystyle \int e^{8x+1} dx = \dfrac{1}{8} e^{8x + 1} + C

Получаем: \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx =

= \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Таким образом, общий вид первообразных для функции f(x) имеет вид:

\dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

ответ: \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Использованные формулы интегрирования:

\displaystyle \int x^{a} \, dx = \dfrac{x^{a+1}}{a+1} + C, \ a \neq -1

\displaystyle \int \dfrac{dx}{\cos^{2}x} = \text{tg} \, x + C

\displaystyle \int e^{x} \, dx = e^{x} + C

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота