Мистер Фокс, Белла, Макс, Петя и Вася играют в мини-бильярд. В игре всего шаров каждый из которых пронумерован цифрой от 0 до 9.После того, как игрок закатывает шар в лузу, он забирает шар себе. В конце игры оказалось, что каждый игрок закатил в лузу по два шара, и каждый смог составить из номеров своих шаров двузначное число таким образом, чтобы числа всех игроков соотносились как 1:2:3:4:5.Один из шаров мистера Фокса имел номер 2. Какая цифра была написана на втором его шаре?
Чтобы произведение не было меньше 3,хотя бы одна из цифр должна быть больше 1, рассмотрим числа в порядке возрастания из суммы
Если сумма 5,то число записывается одной 2 и тремя 1(это 1112,1121,1211,2111) произведение цифр рвано 2,следовательно они не удовлетворяют условию
Если сумма 6,записывается как одна 3 и тремя 1 ИЛИ двумя 2 и двумя 1(1113,1131,1311,3111,1122,1212,)произведения этих чисел равно 3 или 4 соответственно ,следовательно идём дальше
Если сумма 7,то произведение должно 6,эти числа записываются двойкой ,тройкой и двумя единицами (2113,2131,2311,3211) число 3211 кратно 13, оно и подходит
P.s расписывал не для лайков и ,не путайся в будущем ,удачи :)