Marat.shapagat молекуланын дурыс тужырымы дурыс жауап саны:2 химиялык жолмен болинеди табигатта 100ге жуык табигатта миллиондап кездеседи химиялык золмен болинбейди комектесиндерш
Надо проследить закономерности. при n=1 у=|x-1| - наименьшее значение равно 0 при х=1 при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2] при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2 при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3] при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6 при х=3 при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
Итак, при четных n: при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2] при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3] при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4] ... при n=2k y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при нечетных n: при n=1 у=|x-1| - наименьшее значение равно 0 при х=1; при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2 при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6 при х=3 .... при n=2k-1 (нечетное число слагаемых) y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
О т в е т.
при n=2k y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при n=2k-1 (нечетное число слагаемых) y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
при n=1 у=|x-1| - наименьшее значение равно 0 при х=1
при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2]
при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2
при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4
при х∈[2;3]
при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6
при х=3
при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
Итак,
при четных n:
при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2]
при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3]
при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
...
при n=2k
y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при нечетных n:
при n=1 у=|x-1| - наименьшее значение равно 0 при х=1;
при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2
при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6
при х=3
....
при n=2k-1 (нечетное число слагаемых)
y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
О т в е т.
при n=2k
y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при n=2k-1 (нечетное число слагаемых)
y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
См. рисунки в приложении.