Мама купила на ринку 4 кг огірків і 2кг помідорів заплативши за покупку 44грн. тиждень тому огірки були дешевими на 25% а помідори дорощими на 20%, за 4кг огірків і 2кг помідор довелося б заплатити 42грн. скільки коштує 1кг огірків і скільки 1кг помідорів зараз
2n+1
Объяснение:
Представим это всё в виде графа: вершины - дети. Проведём от одной вершины к другой стрелку, если первый ребенок может писать 2-му СМС. Пусть, вершин К. Из каждой вершины выходит n стрелок, поэтому всего стрелок n*K. При этом, для любой пары человек, между ними должна быть хотя-бы 1 стрелка. Значит, стрелок хотя-бы K*(K-1)/2 (именно столько пар детей).
n*K ≥ K*(K-1)/2
n ≥ (K-1)/2
2n+1 ≥ K
Значит, наибольшее кол-во детей равно 2n+1. Приведём пример, когда детей ровно 2n+1.
Расставим их по кругу, и пусть каждый пишет СМС следующим n по часовой стрелке. Тогда любой человек получает СМС от предыдущих n, а пишет следующим n, то есть охвачены все 2n+1 человек (включая его).
Свойства функции y=x3y=x3
Давайте опишем свойства данной функции:
1. x – независимая переменная, y – зависимая переменная.
2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.
3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.
4. Если x= 0, то и y= 0.
График функции y=x3y=x3
1. Составим таблицу значений:

2. Для положительных значений x график функции y=x3y=x3 очень похож на параболу, ветви которой более "прижаты" к оси OY.
3. Поскольку для отрицательных значений x функция y=x3y=x3 имеет противоположные значения, то график функции симметричен относительно начала координат.
Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).

Эта кривая называется кубической параболой.
Примеры
I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.
1. Построим график функции y=x3y=x3.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

II. Построить график функции y=x3+1y=x3+1.
1. Составим таблицу значений:

2. Построим точки. Мы видим, что эти точки симметричны относительно точки с координатами (0,1). В итоге получаем кубическую параболу, смещенную вверх по оси OY (см. рис. 3).