Поясняю. Второй график сразу узнаете, т.к. единственный из них, который ветвями вниз, и это указывает на коэффициент, равный -1
Первый и третий похожи, но по формуле для абсциссы вершины параболы найдем для первого графика функции -в/2а = 5/2=2.5, сразу виден график В, а для третьего -в/2а = -5/2=-2.5, остальное просто проверяется на автомате. т.е. оба направлены ветвями вверх, как А так и В, и точки пересечения с осью ОУ у них одинаковы, т.к. отличаются только вторым коэффициентом.
1. 3√5 ∙√20=3√100=30
2. √32 – √18 –√2= √4√2-3√2-√2=0
3. 4х²– 9х = 0. х*(4х-9)=0⇒х=0; х=9/4=2.25, ответ 0;2.25
4. 25-24=1
5. (х²- 9)/(3х²- 9х)=(х-3)(х+3)/(3х*(х-3))=(х+3)/3х
(3+3)/(3*3)=6/(3*3)=2/3
6. По теореме Виета это свободный член и он равен -7
7. х²- х -2 = 0. По Виету х=2; х=-1
8. (х²- 3х+2)/(х²+ х-2) = 0, разложим дроби на множители. решив уравнения х²- 3х+2=0,х²+ х-2=0, для числителя по Виету х=1, х=2, по Виету для знаменателя х=-2, х=1
(х-1)(х-2)/((х+2)(х-1))=(х-2)/(х+2)=0, ⇒х=2, убеждаемся проверкой, что данный корень является корнем исходного уравнения.
ответ х=2
ответ 1-В; 2-Б; 3-А.
Поясняю. Второй график сразу узнаете, т.к. единственный из них, который ветвями вниз, и это указывает на коэффициент, равный -1
Первый и третий похожи, но по формуле для абсциссы вершины параболы найдем для первого графика функции -в/2а = 5/2=2.5, сразу виден график В, а для третьего -в/2а = -5/2=-2.5, остальное просто проверяется на автомате. т.е. оба направлены ветвями вверх, как А так и В, и точки пересечения с осью ОУ у них одинаковы, т.к. отличаются только вторым коэффициентом.