В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
leanir
leanir
28.06.2020 14:43 •  Алгебра

Логарифмические уравнения. log₅(x+3)=2-log₅(2x+1) log^2₃(x) - 2log₃(3x)-1=0

Показать ответ
Ответ:
iik2001vrnp087am
iik2001vrnp087am
27.05.2020 10:11

log₅(x+3)=2-log₅(2x+1)  ==> log₅(x+3)+log₅(2x+1) = 2 ==> (x+3)(2x+1) = 5^2 = 25.

2x^2+7x-22 = 0. x_1 = -11/2, x_2 = 2

 

0 = log^2₃(x) - 2log₃(3x)-1 = log^2₃(x) - 2log₃(x) -1 - 2log₃(3) = (log₃(x)-1)^2 - 2log₃(3).

2log₃(3) = (log₃(x)-1)^2.

log₃(x) = 1 +-  sqrt(2log₃(3))

x_1 = 3 * e^sqrt(2log₃(3))

x_2 = 3 / e^sqrt(2log₃(3))

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота